Devoir Surveillé n°4A Correction

Exercice 1

La formule donnée permet de remplir la première ligne : $V = P \times (1-t)^n$.

Pour remplir la ligne 2, on peut exprimer P en fonction du reste :

$$V = P \times (1-t)^{n}$$

$$\frac{V}{(1-t)^{n}} = P$$

$$\div (1-t)^{n}$$

Pour remplir la ligne 3, on peut exprimer t en fonction du reste, comme c'était demandé :

$$V = P \times (1 - t)^{n}$$

$$\frac{V}{P} = (1 - t)^{n}$$

$$\sqrt[n]{\frac{V}{P}} = 1 - t$$

$$\sqrt[n]{\frac{V}{P}} - 1 = -t$$

$$1 - \sqrt[n]{\frac{V}{P}} = t$$

$$\div P$$
Racine *n*-ième (car $\frac{V}{P} > 0$)
$$-1$$

$$\times (-1)$$

Prix initial P	Taux de dépréciation annuel t	Durée n	Valeur V
15 000€	15%	5 ans	$15000 \times (1-0,15)^5 \approx$
			6 655,58€
$\frac{10\ 240 \odot}{(1-0,2)^4} = \boxed{25\ 000 \odot}$	20%	4 ans	10 240€
10 000€	$1 - \sqrt[6]{\frac{5\ 314,41}{10\ 000}} = 0, 1 = \boxed{10\%}$	6 ans	5 314,41€

Exercice 2

- 1. À l'aide de $h(t) = 15(1 10^{-0.1t})$ on calcule :
 - (a) $h(0) = 15(1 10^{-0.1 \times 0}) = 15(1 10^0) = 15(1 1) = 15 \times 0 = 0$. La hauteur du bambou au début des mesures est de $\boxed{0 \text{ m}}$.
 - (b) $h(9) = 15(1 10^{-0.1 \times 9}) = 15(1 10^{-0.9}) \approx 13,11$. La hauteur du bambou après 9 semaines est d'environ 13,11 m.
 - (c) $h(15) = 15(1 10^{-0.1 \times 15}) = 15(1 10^{-1.5}) \approx 14,53$. La hauteur du bambou après 15 semaines est d'environ 14,53 m.
- 2. Le premier semestre, cela fait environ 24 semaines. On a déjà 3 valeurs, on peut en calculer quelques autres avant de tracer :

t	h(t)
0	0
1	3,08
3	7,48
6	11, 23
9	13, 11
15	14,53
24	14,94

3. On lit graphiquement que c'est environ autour de la 3e semaine. On calcule $h(3) \approx 7,48$ (insuffisant) et $h(4) \approx 9,03$ (suffisant), donc c'est <u>à la 4e semaine</u>.

BONUS : Il faut donc résoudre h(t) = 7, 5.

$$15(1 - 10^{-0.1t}) = 7.5$$

$$15 - 15 \times 10^{-0.1t} = 7.5$$

$$-15 \times 10^{-0.1t} = -7.5$$

$$10^{-0.1t} = 0.5$$

$$\log(10^{-0.1t}) = \log(0.5)$$

$$-0.1t = \log(0.5)$$

$$t = \frac{\log(0.5)}{-0.1}$$
Développement
$$-15$$

$$\div(-15)$$
Composition avec $x \mapsto \log(x)$

$$\log(10^x) = x$$

$$\div(-0.1)$$

Exercice 3 : Écrire sous forme la plus simple possible (sans log ni puissance) :

1.
$$\log_2(2^x) = \boxed{x}$$

2.
$$7^{\log_7(-1)}$$
 n'existe pas

3.
$$\log_{15}(25) + \log_{15}(9) = \log_{15}(25 \times 9) = \log_{15}(225) = \log_{15}(15^2) = \boxed{2}$$

BONUS
$$\log(\sqrt[n]{10}) = \log\left(10^{\frac{1}{n}}\right) = \boxed{\frac{1}{n}}$$

Exercice 4 : Résoudre les équations :

1.
$$4^{x-5} = 2^x$$
. On reconnaît que $4 = 2^2$.
Donc $4^{x-5} = (2^2)^{x-5} = 2^{2(x-5)} = 2^{2x-10}$. On peut donc écrire :

$$2^{2x-10} = 2^{x}$$

$$2x - 10 = x$$

$$x - 10 = 0$$

$$x = 10$$

$$x = 10$$
Exposants égaux
$$-x$$

$$+10$$
Donc $S = \{10\}$

2. $\log_2(x) = 5$. Ici on peut simplement composer à gauche et à droite par 2^x et on trouve $x = 2^5$. Donc $\mathcal{S} = \{2^5\}$ (2^5 est bien dans le domaine de définition de $\log_2(x)$ qui est $]0; +\infty[$).

BONUS
$$\log_5(2-x) = \log_5(4-2x)$$
. BON
Composition avec $x \mapsto 5^x$ $\log_5(2-x) = \log_5(4-2x)$
 $5^{\log_5(y)} = y$ $2-x = 4-2x$
 $+2x$ $2+x = 4$
 $x = 2$

Maintenant, il faut vérifier le domaine de définition. $\log_5(2-x)$ est défini quand 2-x>0 c'est-à-dire quand x<2. Donc 2 n'est pas dans son domaine, et ne pourra pas être solution! Ainsi $\mathcal{S}=\emptyset$.

BONUS $3^{x-5} = 3^{3x-7}$. On a deux puissances 2x) d'un même nombre, on peut directement résoudre :

$$3^{x-5} = 3^{3x-7}$$

$$x-5 = 3x-7$$

$$-5 = 2x-7$$

$$2 = 2x$$

$$1 = x$$

$$\Rightarrow \div 2$$
Exposants égaux
$$-x$$

$$+7$$

$$\div 2$$
Donc $S = \{1\}$