Chapitre 6. Statistiques à 2 variables (2/3)

Yann Barsamian

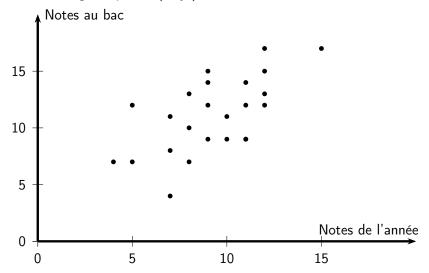
École Européenne de Bruxelles 1

Année scolaire 2020-2021

Plan du chapitre

- Révisions sur les moyennes
- Révisions sur les équations de droites
- Un nouvel ajustement linéaire : la droite de Mayer

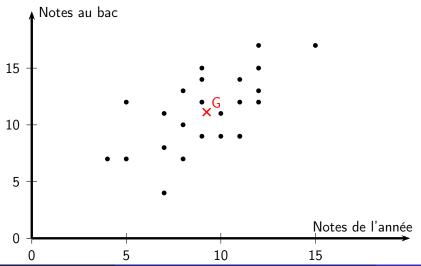
Lors du chapitre 4, on s'est intéressés à des nuages de points qui avaient la forme d'une droite. On a vu la méthode des moindre carrés qui donne l'équation d'une droite d'ajustement.


Cet ajustement a de bonnes propriétés mais un problème subsiste : il n'est pas faisable "à la main", en tout cas pas à notre niveau : on doit se servir de la calculatrice.

Dans ce chapitre, on va étudier un nouvel ajustement linéaire : la droite de Mayer. Cet ajustement est très simple à faire à la main!

Reprenons un exemple du chapitre précédent : pour une classe de Terminale en mathématiques, on regarde leur moyenne x au long de l'année et leur note y au baccalauréat (sur 20). Voici des notes fictives pour une classe de 24 élèves. Ainsi, chaque couple (x_i, y_i) (pour i de 1 à 24) représente les notes d'un élève de la classe.

Xi	8	9	7	15	12	12	10	8	11	11	7	8
Уi	7	9	4	17	13	15	9	13	14	9	11	10
Xį	11	11	12	12	7	9	9	5	9	5	10	4
Уi	9	12	17	12	8	15	12	7	14	12	11	7


Le nuage de points $(x_i; y_i)$ était le suivant :

On se rappelle que le <u>point moyen</u> du nuage, c'est le point $G(\overline{x}, \overline{y})$.

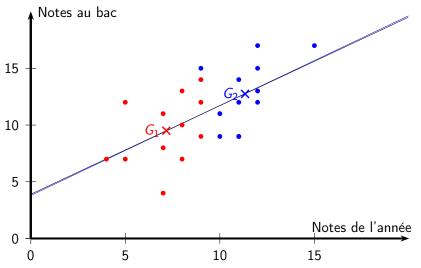
$$x_G = \frac{8+9+7+15+12+12+10+8+11+11+7+8+11+11+12+12+7+9+9+5+9+5+10+4}{24}$$

$$y_G = \frac{7+9+4+17+13+15+9+13+14+9+11+10+9+12+17+12+8+15+12+7+14+12+11+7}{24}$$

Pour la méthode Mayer, on commence par séparer le nuage de points en deux parties, en ordonnant les points par x croissant x.

Xi	4	5	5	7	7	7	8	8	8	9	9	9
Уi	7	7	12	4	8	11	7	10	13	9	12	14
Xi	9	10	10	11	11	11	11	12	12	12	12	15
Vi	15	9	11	9	9	12	14	12	13	15	17	17

Pour chacun des deux sous-nuages, on calcule le point moyen :


$$\begin{cases} x_{G_{1}} = \frac{4+5+5+7+7+7+8+8+8+9+9+9}{12} \approx 7, 17 \\ y_{G_{1}} = \frac{7+7+12+4+8+11+7+10+13+9+12+14}{12} = 9, 5 \end{cases} \Rightarrow G_{1}(7, 17; 9, 5)$$

$$\begin{cases} x_{G_{2}} = \frac{9+10+10+11+11+11+11+11+12+12+12+15}{12} \approx 11, 33 \\ y_{G_{2}} = \frac{15+9+11+9+9+12+14+12+13+15+17+17}{12} = 12, 75 \end{cases} \Rightarrow G_{2}(11, 33; 12, 75)$$

La droite de Mayer est la droite $(G_1G_2)!$

^{1.} Puis par y croissant en cas d'égalité.

Sur le nuage, on peut facilement contrôler que G_1 et G_2 sont bien les points moyens de chacune des deux moitiés du nuage :

On a tracé $(G_1 G_2)$ en noir (et la droite des moindres carrés en bleu, quasiment identique). Comment calculer l'équation de $(G_1 G_2)$?

2020-2021