Chapitre 11. Géométrie du plan avec vecteurs

Yann Barsamian

École Européenne de Bruxelles 1

Année scolaire 2021–2022

Plan du chapitre

Le but de ce chapitre est de pouvoir faire des calculs dans le plan plus simplement, à l'aide d'une nouvelle notion : les vecteurs. Plus généralement, les vecteurs ne servent pas que dans le plan à 2 dimensions, ils servent aussi dans l'espace en 3 dimensions. . . et même dans plus de dimensions.

- Notion de vecteur
- Opérations sur les vecteurs
- Démontrer avec des vecteurs
- Transformations du plan

I/ Notion de vecteur

1) Translation d'une figure ¹:

Quand on "pousse" un objet, c'est une translation. Exemples :

- une voiture qui se déplace sur une route rectiligne (à part les roues car elles tournent en même temps qu'elles avancent)
- un siège de ski dans un téléphérique

La "poussée" qu'on effectue a trois caractéristiques :

- une direction (la droite sur laquelle on pousse)
- un sens (sur cette droite, de quel côté on pousse)
- une norme (de combien on pousse)

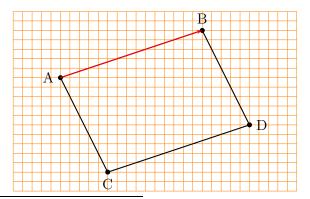
Dans l'exercice page 136 qu'on a traité lundi 3 mai, on "poussait" selon $\overrightarrow{HH'}$, c'est-à-dire dans la direction de la droite (HH'), de H vers H', et d'une longueur égale à HH'.

^{1.} https://www.youtube.com/watch?v=8Jb9cMOeYSk

I/ Notion de vecteur

2) Lien avec le parallélogramme :

On l'a vu dans Geogebra, si on construit D, l'image de C par la translation de vecteur \overrightarrow{AB} (c'est-à-dire, si on "pousse" le point C par translation de vecteur \overrightarrow{AB}), alors ABDC est un parallélogramme 2 .



2. J'insiste sur l'ordre des points : il s'agit du parallélogramme A-B-D-C.

I/ Notion de vecteur

Dans un parallélogramme ABDC, il est donc équivalent de pousser selon \overrightarrow{AB} ou de pousser selon \overrightarrow{CD} . On dit que $\overrightarrow{AB} = \overrightarrow{CD}$: les vecteurs sont égaux.

Il en va de même des vecteurs qui sont sur les deux autres côtés du parallélogramme : $\overrightarrow{AC} = \overrightarrow{BD}$.

Plus généralement, étant donné un vecteur $\overrightarrow{\mathbf{u}}$, il existe une infinité de manières de représenter ce vecteur sur un dessin : il suffit de lui prendre des points de départs différents. Par exemple dans le parallélogramme ABDC, le représentant de \overrightarrow{AB} qui démarre en C, c'est \overrightarrow{CD} .

II/ Opérations sur les vecteurs

1) Addition:

Effectuer une translation par $\overrightarrow{\mathbf{u}}$ puis une translation par $\overrightarrow{\mathbf{v}}$, c'est effectuer une translation par $\overrightarrow{\mathbf{u}} + \overrightarrow{\mathbf{v}}$.

Visuellement, pour construire $\overrightarrow{u} + \overrightarrow{v}$, on peut mettre bout à bout les deux vecteurs.

Cas particulier important : si on effectue une translation par \overrightarrow{AB} puis une translation par \overrightarrow{BC} , c'est donc effectuer une translation par $\overrightarrow{AB} + \overrightarrow{BC}$. On peut observer sur une figure que c'est équivalent à une translation par \overrightarrow{AC} (comme on vient de le dire, si on met bout à bout \overrightarrow{AB} et \overrightarrow{BC} , on obtient bien \overrightarrow{AC}). Donc $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$. C'est la relation de Chasles ³.

La somme est commutative : $\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{v} + \overrightarrow{u}$.

^{3.} https://www.youtube.com/watch?v=fbVrdYiY0qc

II/ Opérations sur les vecteurs

2) Multiplication par un réel :

On sait maintenant construire par ex. $\overrightarrow{u} + \overrightarrow{u}$... qu'on écrit donc $2\overrightarrow{u}$. C'est un vecteur qui est dans la même direction et le même sens que \overrightarrow{u} , mais dont la norme est doublée. De même pour $10\overrightarrow{u}$, $0,5\overrightarrow{u}$, etc. Pour multiplier par un nombre négatif, par ex. $-3\overrightarrow{u}$, c'est le vecteur qui est dans la même direction mais le sens opposé à \overrightarrow{u} , et dont la norme est multipliée par 3.

Cas particulier : si on multiplie un vecteur par 0, on obtient un vecteur de norme 0. C'est ce qu'on appelle le <u>vecteur nul</u>, noté $\overrightarrow{0}$. Faire une translation par le vecteur nul, c'est rester sur place!

On a également la distributivité : $a(\overrightarrow{u} + \overrightarrow{v}) = a\overrightarrow{u} + a\overrightarrow{v}$.

Vidéos bilan du 1) et 2) :

https://www.youtube.com/watch?v=JxYpPE6iPEA https://www.youtube.com/watch?v=ak1WcdhOaFA

II/ Opérations sur les vecteurs

3) Repère du plan :

À partir de deux vecteurs <u>indépendants</u>, je peux aller partout dans le plan (deux vecteurs sont dépendants si leurs directions sont parallèles). On peut donc définir un repère du plan par un point et deux vecteurs ⁴, comme quand on définit un repère du plan par un point et deux axes gradués.

Pour lire les coordonnées d'un point P dans un repère d'origine O et de base $(\overrightarrow{OA}; \overrightarrow{OB})$, il faut donc exprimer \overrightarrow{OP} en fonction de \overrightarrow{OA} et \overrightarrow{OB} , cf.

https://www.youtube.com/watch?v = dnHRpXgANgo.

^{4.} Remarque : si on prend trois vecteurs dans le plan, ils sont forcément dépendants les uns des autres, car le plan est de dimension 2.

III/ Démontrer avec des vecteurs

1) Droites parallèles :

Deux droites (AB) et (CD) sont parallèles lorsque \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires (proportionnels) : il existe k tel que $\overrightarrow{AB} = k \times \overrightarrow{CD}$.

Remarque : le vecteur nul est colinéaire à tous les vecteurs, car on a pour n'importe quel vecteur \overrightarrow{AB} l'égalité $\overrightarrow{0} = 0 \times \overrightarrow{AB}$.

Remarque : on verra l'an prochain un critère simple, avec les coordonnées, pour prouver que deux vecteurs sont colinéaires.

III/ Démontrer avec des vecteurs

2) Parallélogrammes :

Un parallélogramme a ses deux côtés opposés deux à deux parallèles (deux parallélismes à démontrer). Avec les vecteurs, il suffit de démontrer que les vecteurs de deux côtés opposés sont égaux.

<u>Attention</u> à bien être précis sur l'ordre des points, comme déjà vu à la diapo 4.