Exercice 1

3 points

1. Convertir les mesures des trois angles de degrés en radians (donner des valeurs exactes).

$$\alpha = 45^{\circ}$$

$$\beta = 15^{\circ}$$

$$\gamma=275^\circ$$

3 points

2. Convertir les mesures des trois angles de radians en degrés (donner des valeurs exactes pour α et β , et arrondir l'angle γ au centième).

$$\alpha = \frac{2}{3}\pi \text{ rad}$$

$$\beta = \frac{7}{12}\pi \text{ rad}$$

$$\gamma = 3 \text{ rad}$$

Les radians et les degrés sont proportionnels, et on sait que 2π radians valent 360° degrés, donc on peut compléter le tableau de proportionnalité suivant :

Exemple de calcul : pour 45°, cela donne
$$\frac{45 \times 2\pi}{360} = \boxed{\frac{\pi}{4} \text{ rad}}$$

Exemple de calcul: pour
$$\frac{2}{3}\pi$$
 rad, cela donne $\frac{2}{3}\pi \times \frac{360}{2\pi} = \frac{2\pi \times 360}{3 \times 2\pi} = \frac{360}{3} = \boxed{120^{\circ}}$.

Degrés	360	45	15	275	120	105	$\frac{540}{\pi}$
Radians	2π	$\frac{\pi}{4}$	$\frac{\pi}{12}$	$\frac{55\pi}{36}$	$\frac{2}{3}\pi$	$\frac{7}{12}\pi$	3

Exercice 2

1 point

1. Reproduisez ce cercle sur votre copie.

4 points

2. Placez-y les points suivants :

(a) Le point A associé à π .

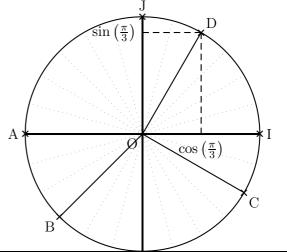
(b) Le point B associé à $\frac{5\pi}{4}$.

(c) Le point C associé à $\frac{11\pi}{6}$

(d) Le point D associé à $\frac{\pi}{3}$.

2 points

3. À partir du point D, expliquer comment retrouver graphiquement $\cos\left(\frac{\pi}{3}\right)$ et $\sin\left(\frac{\pi}{3}\right)$, en laissant apparents les traits utiles.

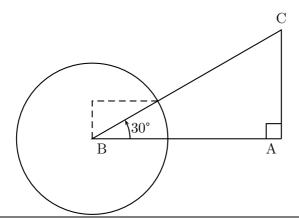


Le cercle a été divisé en 24 (ou un demi-cercle a été divisé en 12), donc chaque trait pointillé indique $\frac{\pi}{12}$. Pour avoir des quarts de π , il faut donc prendre 3 traits (donc pour le point A, il faut compter 15 traits; on peut se souvenir que $\frac{\pi}{4}$, c'est 45° donc la moitié d'un angle droit, et le reporter 5 fois). Pour avoir des sixièmes de π , il faut prendre 2 traits (on pouvait ici remarquer que $\frac{11\pi}{6}$, c'est $\frac{12\pi}{6} - \frac{\pi}{6}$, et donc tourner de $\frac{\pi}{6}$ dans le sens négatif, plutôt que de tourner de $\frac{11\pi}{6}$ dans le sens positif). Pour avoir des tiers de π , il faut prendre 4 traits.

Le cosinus se lit sur l'axe horizontal, le sinus se lit sur l'axe vertical. Voir traits de construction.

2 points | Construire un triangle ABC rectangle en A avec AB = 5 cm et $\widehat{ABC} = 45^{\circ}$.

Le triangle est rectangle en A et on connaît un autre angle $\widehat{ABC} = 30^{\circ}$. On peut se rappeler qu'un angle de 30° correspond à $\sin(30^{\circ}) = 0, 5$. On peut construire un cercle trigonométrique centré en B, et construire l'angle de 30° à l'aide de cette valeur. Ensuite, on fait l'intersection avec la perpendiculaire à (AB) en A.

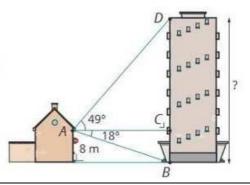


Exercice 4

Monsieur Barsamian veut déterminer la hauteur du bâtiment en face de son habitation. Sur le dessin ci-contre, on peut trouver quelques mesures qu'il a effectuées depuis sa chambre située au point A (à 8 m du sol).

4 points

Calculer la hauteur du bâtiment.



Il s'agit ici de calculer la longueur BD, qu'on peut décomposer, vu les données du schéma, en $\mathrm{BC}+\mathrm{CD}$.

L'énoncé nous dit que BC = 8.

Pour calculer CD : dans le triangle ACD rectangle en C, on n'a pas assez de données : on ne connaît que deux angles. Il faut essayer de trouver une longueur pour avoir assez de données.

La longueur AC peut être calculée dans le triangle ABC rectangle en C: dans ce triangle, par rapport à l'angle $\widehat{BAC}=18^\circ$, [AC] est le côté adjacent et on connaît la longueur du côté [BC] qui est le côté opposé. On va donc utiliser la tangente :

va donc utiliser la tangente :
$$\tan\left(\widehat{BAC}\right) = \frac{BC}{AC}$$

$$\tan\left(18^{\circ}\right) = \frac{8}{AC}$$

$$AC \times \tan\left(18^{\circ}\right) = 8$$

$$AC = \frac{8}{\tan\left(18^{\circ}\right)}$$

$$AC \approx 24,6$$
On remplace par les valeurs
$$\times AC$$

$$\div \tan\left(18^{\circ}\right)$$
Valeur approchée

Maintenant qu'on a AC, on peut travailler dans le triangle ACD rectangle en C: dans ce triangle, par rapport à l'angle $\widehat{CAD} = 49^\circ$, on vient de calculer la longueur de [AC] qui est le côté adjacent, et on cherche la longueur du côté [BC] qui est le côté opposé. On va donc utiliser la tangente :

$$\tan\left(\widehat{\text{CAD}}\right) = \frac{\widehat{\text{CD}}}{\widehat{\text{AC}}}$$
 $\tan\left(49^{\circ}\right) \approx \frac{\widehat{\text{CD}}}{24,6}$
On remplace par les valeurs (approchée pour AC)
$$28.3 \approx \widehat{\text{CD}}$$

$$28.3 \approx \widehat{\text{CD}}$$

Au final, l'immeuble mesure $\boxed{36,3~\mathrm{m}}$ de haut.