
Information and Communication Technologies — S6 — Work n°10

Handling data — Part 1 — Elements of correction

1 With two arrays

For the first questions, the skeleton code could be modified as in the code given in Listing 1 :

1 import unicodedata

2 # This removes diacritics : accents , diaereses , umlauts , tildes , cedillas ...

3 def normalize (text):

4 nfkd_form = unicodedata .normalize (’NFKD ’, text)

5 return "".join ([c for c in nfkd_form if not unicodedata .combining (c)])

6

7 def normalizeAndLowercase (text):

8 return normalize (text).lower()

9

10 names = []

11 phones = []

12

13 # "iso -8859 -1" is a common encoding . On Linux , the standard encoding is

14 # "utf -8" and on Windows you can also encounter "cp1252".

15 f = open ("TP10_Contacts .txt", "r", encoding ="iso -8859 -1 ")

16 # strip() removes blank characters at the beginning and the end of the string ,

17 # here in particular the end of line characters left by readline ()

18 while(True):

19 name = f.readline ().strip()

20 if (name == ""):

21 break

22 phone = f.readline ().strip()

23 if (phone == ""):

24 print("A contact has been found without number.")

25 break

26 names.append(name)

27 phones.append(phone)

28 f.close()

29 nbContacts = len(names)

30

31 s = input("What contact do you want to search for ? ")

32 for i in range(nbContacts):

33 if (normalizeAndLowercase (s) == normalizeAndLowercase (names[i])):

34 foundContact = True

35 print(names[i] + " has number " + phones[i] + ".")

36 if (not(foundContact)):

37 print(s + " is not in your contacts .")

Listing 1: Handle our contacts file — Two arrays — http://www.barsamian.am/2021-2022/S6ICTE/

TP10_Contacts_bis.py.

First, we make sure to compare normalized and lowercase versions of the name given by the user
and given in the contact file. Don’t forget to normalize and lowercase both variables. You want to find
your contact Bob even if you wrote “Bob” in the file and typed “bob” when prompted, but also if you
wrote “bob” in the file and typed “Bob” when prompted !

Then, we make sure that our contact list can be as big as wanted. To do that, instead of creating
an array of capacity 10 and filling it from cell 0 to 9, we create empty arrays and make them grow
with the “append” method. This avoids having an “out of range” error (that happens when we try to
access a cell of an array with a number outside of the range {0, 1, 2, . . . len(array)− 1}).

Last, we process the array of contacts with a slightly different condition. Instead of processing it
until we found a suitable contact, we process it from the beginning to the end. Each time we encounter
a suitable contact, we print it. At the end of the processing, how to know if a suitable contact was
found? This is the role of the “foundContact” variable.

http://www.barsamian.am/2021-2022/S6ICTE/TP10_Contacts_bis.py
http://www.barsamian.am/2021-2022/S6ICTE/TP10_Contacts_bis.py

2 With a dictionary

For question 6, the skeleton code could be modified as in the code given in Listing 2 :

1 import unicodedata

2 # This removes diacritics : accents , diaereses , umlauts , tildes , cedillas ...

3 def normalize (text):

4 nfkd_form = unicodedata .normalize (’NFKD ’, text)

5 return "".join ([c for c in nfkd_form if not unicodedata .combining (c)])

6

7 def normalizeAndLowercase (text):

8 return normalize (text).lower()

9

10 contacts = {}

11

12 # "iso -8859 -1" is a common encoding . On Linux , the standard encoding is

13 # "utf -8" and on Windows you can also encounter "cp1252".

14 f = open ("TP10_Contacts .txt", "r", encoding ="iso -8859 -1 ")

15 # strip() removes blank characters at the beginning and the end of the string ,

16 # here in particular the end of line characters left by readline ()

17 while(True):

18 name = f.readline ().strip()

19 if (name == ""):

20 break

21 phone = f.readline ().strip()

22 if (phone == ""):

23 print("A contact has been found without number.")

24 break

25 contacts [name] = phone

26 f.close()

27

28 s = input("What contact do you want to search for ? ")

29 foundContact = False

30 for name in contacts .keys ():

31 if (normalizeAndLowercase (s) == normalizeAndLowercase (name)):

32 foundContact = True

33 print(name + " has number " + contacts [name] + ".")

34 if (not(foundContact)):

35 print(s + " is not in your contacts .")

Listing 2: Handle our contacts file — Dictionary — http://www.barsamian.am/2021-2022/S6ICTE/

TP10_Contacts_ter.py.

First, we build a dictionary instead of two arrays. We start with an empty dictionary {} and we
append a new contact by simply updating thanks to contacts[name] = phone, as we would do with
arrays. The only difference is that here, we access the dictionary directly by the key we need, instead
of needing an index.

Then, we see that it is not possible to put twice the same key inside the dictionary. How can we
solve this problem?

A first idea would be to put an array of strings in the dictionary, not a string. Unfortunately, a
dictionary can only hold strings, not arrays.

A second idea is to add the entries in the dictionary with slightly different names. Instead of
adding “Bob” each time, we would add “Bob”, then “Bob1”, “Bob2”, etc. in the dictionary. This poses
a challenge: how to track the number of times we added “Bob(something)” in the dictionary?

It is possible to do it with a loop. See the modified code given in Listing 3. Please download this
code and test it on different contact files (for example, with multiple “Bob”).

1 import unicodedata

2 # This removes diacritics : accents , diaereses , umlauts , tildes , cedillas ...

3 def normalize (text):

4 nfkd_form = unicodedata .normalize (’NFKD ’, text)

5 return "".join ([c for c in nfkd_form if not unicodedata .combining (c)])

6

http://www.barsamian.am/2021-2022/S6ICTE/TP10_Contacts_ter.py
http://www.barsamian.am/2021-2022/S6ICTE/TP10_Contacts_ter.py

7 def normalizeAndLowercase (text):

8 return normalize (text).lower()

9

10 contacts = {}

11

12 # "iso -8859 -1" is a common encoding . On Linux , the standard encoding is

13 # "utf -8" and on Windows you can also encounter "cp1252".

14 f = open ("TP10_Contacts .txt", "r", encoding ="iso -8859 -1 ")

15 # strip() removes blank characters at the beginning and the end of the string ,

16 # here in particular the end of line characters left by readline ()

17 while(True):

18 name = f.readline ().strip()

19 if (name == ""):

20 break

21 phone = f.readline ().strip()

22 if (phone == ""):

23 print("A contact has been found without number.")

24 break

25 if name in contacts :

26 i = 1

27 while (name + str(i)) in contacts :

28 i = i + 1

29 contacts [name + str(i)] = phone

30 else :

31 contacts [name] = phone

32 f.close()

33

34 s = input("What contact do you want to search for ? ")

35 foundContact = False

36 for name in contacts .keys ():

37 if (normalizeAndLowercase (name).startswith (normalizeAndLowercase (s))):

38 foundContact = True

39 print(name + " has number " + contacts [name] + ".")

40 if (not(foundContact)):

41 print(s + " is not in your contacts .")

Listing 3: Handle our contacts file — Dictionary enabling multiple values for a key — http://www.b

arsamian.am/2020-2021/S6ICT/TP10_Contacts_quater.py.

http://www.barsamian.am/2020-2021/S6ICT/TP10_Contacts_quater.py
http://www.barsamian.am/2020-2021/S6ICT/TP10_Contacts_quater.py

	With two arrays
	With a dictionary

