Exercice 1

Soit $x \in \mathbb{R}^+$. Écrire les expressions suivantes à l'aide d'un exposant rationnel positif :

1.
$$\sqrt{x}$$

2.
$$\sqrt{x^5}$$

3.
$$\sqrt[7]{x}$$

4.
$$\sqrt[3]{x^7}$$

Exercice 2

Soit $a \in \mathbb{R}^+$. Écrire les expressions suivantes à l'aide d'une puissance de a, puis donner une autre expression avec une puissance de a non négative :

1.
$$a^{\frac{1}{2}}a$$

2.
$$a^{\frac{1}{3}}a^{\frac{1}{2}}$$

3.
$$\frac{a^{\frac{1}{3}}}{a^{\frac{1}{2}}}$$

4.
$$(a^2)^{\frac{2}{3}}$$

Exercice 3

Calculer sans machine:

1.
$$4^{\frac{1}{2}}$$

4.
$$1^{\frac{3}{5}}$$

7.
$$(-8)^{\frac{1}{3}}$$

10.
$$25^{-\frac{1}{2}}$$

2.
$$125^{\frac{1}{3}}$$

5.
$$27^{-\frac{1}{3}}$$

8.
$$32^{-\frac{2}{5}}$$

11.
$$100^{-1.5}$$

3.
$$0^{\frac{1}{5}}$$

6.
$$4^{\frac{1}{4}}$$

9.
$$36^{\frac{3}{2}}$$

$$12. \ 32^{0.2}$$

Exercice 4 — Le nombre d'or

Le nombre d'or est le nombre :

$$\phi = \frac{1 + \sqrt{5}}{2}$$

Montrer que $\phi^2 = 1 + \phi$.

Exercice 5

Si on place une quantité D en euros au taux t alors, au bout de n années, on aura un nombre d'euros F sur le compte égal à :

$$F = D \times (1+t)^n$$

- 1. Exprimer D en fonction de t, n et F avec des exposants négatifs (sans quotient).
- 2. Exprimer t en fonction de F, D et n avec des exposants négatifs et rationnels (sans quotient autre part que dans l'exposant).