——Information and Communication Technologies — S6 — Work n°16

DIGITAL IMAGES — PART 1

1 What is a digital image?

Let’s take as example the following image (source: “Université d’Eté Espace Education 20147). ..

After two zooms, we arrived at the atomic level of the image: the pixels (big squares of uniform
color). All digital images (“raster” images, not “vector” images) are made from pixels.

With our naked eye when we look at our screen, it’s impossible to distinguish the different pixels
of an image that fits our screen. Nevertheless, we can see them when we zoom inside the image: these
little uniform squares that, together, form digital images.



We wrote that a pixel is the atomic level of the image. Indeed, as an atom is made of quarks,
a pixel is made of smaller units: the colors. We will not go through all possible ways to encode a
pixel, but we will study a basic encoding, thanks to the three primary colors red / green / blue (RGB
encoding). We will thus work with additive colors, as opposed to the classical printers that work with
subtractive colors (e.g. cyan / magenta / yellow / key (black)).

Each color is encoded with the quantity of red, green and blue it contains. If we put neither red,
nor green, nor blue, we obtain black (with additive colors, if we put no color, it’s black), and if we put
a maximum of red, of green and of blue, we obtain white.

For “usual” images, the quantities of red, green and blue are integral numbers between 0 and 255.
Those numbers can be put on 8 bits (255 = 1111 1111(2)), or a byte. Thus, each pixel uses 3 bytes, which
results in a “reasonable” weight for a digital image. If we use a digital camera with 20 millions pixels,
one picture thus weights 60 megabytes to convey all the information. Luckily, compression algorithms
exist (the .jpg format for instance, for Joint Photographic Ezperts Group, allows to compress image,
with or without losing information): we thus get digital images that weight about 5 to 10 megabytes.

To get an idea of what this encoding is all about, here is the image of the flags on the rocket (width:
14 pixels, height: 15 pixels), with the associated red / green / blue encoding:

Full image Values of the “Red” layer

63 50 53 ¢
78 16 6 36 60

19

Values of the “Green” layer Values of the “Blue” layer



2 Image processing: grayscale

A black and white image (grayscale) is made of gray pixels, more or less dark. Each pixel has an
associated number. As in the previous part, we will here use 0 for black and 255 for white. The
portable graymap format (PGM) file format allows us to handle those kind of images, see for example
https://en.wikipedia.org/wiki/Netpbm#File_formats. Thus, as the associated number is bigger,
the pixel is lighter.

As an example, let’s take the following two-dimensional array:

255 255 255 0 65 140 255 e
255 2565 0 O 77 153 255 —
. 255 0 0 0 97 166 255 .
image = 955 0 955 0 102 179 255 represents the image HI m—
255 255 255 0 115 191 255 T
255 255 255 0 128 204 255 i

In this work we will manipulate black and white images, thus two-dimensional arrays. We will
only focus on images of size 6 x 7 pixels, modeled by two-dimensional arrays of integers (indexes in
[0..5] x [0..6]), each integer representing the grayscale (between 0 and 255).

Please start by downloading the following file, that contains the array above, and a simple function
to print two-dimensional arrays:

http://www.barsamian.am/2022-2023/S6ICTC/TP16_Images.py

1. To binarize an image, we must choose a threshold. For example if we choose the threshold 128:
we will replace each pixel with value less than 128 with 0, and the others with 255. Write the
algorithm of the function binarize(array) that takes an image as input, and returns another
image as output, which is the binarized version of the input.

2. The purpose of the function given in Figure 1 is unknown. What value is returned by this
function if we call it with the input image given as example before? Can you explain the role of
this function?

I
Input:
array is an array of array of integers.

Variables:
i and j are two integers.
result is a real number.

Instructions of the function:

1 result<+ 0

2 For i From 0 to 5

3 For j From 0 to 6

4 result < result + arrayli][j]
5 End For

6 End For

7 Return result/42

Figure 1: Function “mystery”.


https://en.wikipedia.org/wiki/Netpbm#File_formats
http://www.barsamian.am/2022-2023/S6ICTC/TP16_Images.py

3.

BONUS

We now want to add more contrast to the image: a dark gray will be darker, a light gray will
be lighter. For a given image, we determine a value g between 0 and 255 (the “grayscale” of this
image). Then, for each pixel, if we note v the value:

e if v < g, the new value is v/2

e if v > g, the new value is 2v (except if this would exceed 255, in this case, the new value is
255)

For example if an image has g = 100 :

e a pixel with value v = 93 (93 < g) is replaced by 93/2 = 46
e a pixel with value v = 120 (120 > g) is replaced by 2 x 120 = 240
e a pixel with value v = 200 (200 > g) is replaced by 255, because 2 x 200 = 400 > 255

Write the algorithm of a function addContrast (image,g) that takes as inputs an image and a
grayscale, and outputs the new image with added contrast.

. We now want to blur a little bit the image: in order to do this, we can for instance replace each

pixel with the average (rounded down) of 3 pixels (when possible): the left neighbor, the right
neighbor, and the current pixel.

Write the algorithm of a function blur(image) that takes as input an image and outputs the
new blurred image.

Modify the function blur (image) so that it computes the average of 5 pixels (when possible): in
addition to the 3 pixels already taken in consideration, we also consider the upper neighbor and
the lower neighbor.



	What is a digital image?
	Image processing: grayscale

