Math 3p 2015 Question B1

$$\mathbf{f}(x) := 0.75 \cdot x^3 - 1.25 \cdot x^2 - 1 \rightarrow Done$$

$$\mathbf{g}(x) := x^2 - 1 \cdot Done$$

a) solve
$$(f(x)=g(x),x) + x=0$$
. or $x=3$.

$$f(0) = -1$$
. $f(3) = 8$.

Points of intersection (0,-1) and (3,8).

b)
$$\int_{0}^{3} (\mathbf{g}(x) - \mathbf{f}(x)) dx = 5.0625 \text{ (or } \frac{81}{16} \text{)}$$

c)
$$\int_{0}^{3} 1 + \left(\frac{d}{dx}(\mathbf{f}(x))\right)^{2} dx = \mathbf{11.1663} \quad \text{or}$$

$$\operatorname{arcLen}(\mathbf{f}(x), x, 0, 3) = 11.1663$$

Math 3p 2015 Question B2

Math 3p 2015 Question B2

$$\mathbf{f}(t) := 9 \cdot \mathbf{e}^{-0.12 \cdot t} + 11 \cdot Done$$

a)
$$f(2) = 18.0797$$
 and $f(9) = 14.0564$. Hence

Midnight temperature 18 °C and at 7:00 next morning 14 °C.

b)
$$\mathbf{fp}(t) := \frac{d}{dt}(\mathbf{f}(t)) \cdot Done \quad \mathbf{fp}(t) \cdot -1.08 \cdot (0.88692)^t$$
, i.e. $f'(t) = -1.08 \cdot (0.88692)^t$

 $f'(t) = -1.08 \cdot (0.88692)^t$ is negative for all t, hence f is decreasing.

c) fp(2) = -0.85, hence temperature decreases by 0.85 °C per hour at midnight (t=2).

d) solve(
$$\mathbf{f}(t) = 15, t$$
) • $t = 6.75775$

Temperature falls below 15°C at t=6.76. i.e. at 4:45:28 in the morning.

e)
$$\int_{0}^{9} (0.7 \cdot e^{-0.12 \cdot t}) dt = 3.85 .$$

Hence 3.85 kWh is going out of the room between 22:00 h (t=0) and 7:00h (t=9)

Math 3p 2015 Question B3

- a) Expected number of vegetarian menus: $120 \cdot 0.2 = 24$.
- b) X = # of vegetarian menus chosen is distributed binom(120,0.20).

 $P(X \le 28) = binomCdf(120,0.2,0,28) = 0.8477$

Probability that enough vegetarian menus were prepared is 0.8477.

c) X = # of vegetarian menus chosen is distributed binom(120,0.20).

The number of vegetarian menus prepared is called *v*.

v=31: binomCdf(120,0.2,0,31) = 0.952975

v=32: binomCdf(120,0.2,0,32) = 0.970425

v=33: binomCdf(120,0.2,0,33) = 0.982058

At least 33 vegetarian menus must be prepared.

d) Y=#of fish menus chosen is normally distributed with mean μ =240 and standard deviation σ . Two ways of finding σ :

Given: $P(200 \le Y \le 280) = 0.95$,

i.e. $4 \cdot \sigma \approx 80$ or $\sigma \approx 20$

Or use solve with a guess:

solve(normCdf(200,280,240, σ)=0.95, σ =20)

• $\sigma = 20.4086 \triangle$

Hence $\sigma=20.4$

e) P(Y>320)=normCdf(320, ∞ ,240,20) = 0.000032

Very unlikely.

Another argument: 320 is 4 standard deviations above the mean.

Math 3p 2015 Question B4

Math 3p 2015 Question B4

The diagram below shows the scatter plot, demanded in a), and the regression line, demanded in b).

4	A age	^B choles	С	D	E
=				=LinRegM	
1	15	3.7	Title	Linear R	
2	20	4.32	RegE	m*x+b	
3	25	4.39	m	0.035238	
4	30	4.73	b	3.28976	
5	35	3.1	r²	0.331135	
6	40	4.69	r	0.575443	
7	45	5.41	Resi	{-0 . 1183	
8	50	5.14			
9					
<					>
D8					

b) See spreadsheet and diagram above.

Regression line

$$y=f1(x) \rightarrow y=0.035 \cdot x+3.29$$

Correlation coefficient

$$stat.r = 0.575$$

c) On the diagram to the right you see the regression line y = f1(x) and the lines $y=f1(x) \pm 0.90$ above and below the regression line.

There is only one outlier:

The observation at age 35.

d) Below you see the spreadsheet without the outlier, the corresponding scatter plot and the two regression lines.

$$y = \mathbf{f1}(x) = 0.035 \cdot x + 3.29$$
 and $y = \mathbf{f4}(x) = 0.039 \cdot x + 3.37$

•	age1	B choles1	С	D	Е	^
=				=LinRegM		
1	15	3.7	Title	Linear R		
2	20	4.32	RegE	m*x+b		
3	25	4.39	m	0.039137		
4	30	4.73	b	3.36774		
5	40	4.69	r²	0.840457		
6	45	5.41	r	0.916764		
7	50	5.14	Resi	{-0 . 2547		
8						
9					>	~
E8						

d) cont.

The upper line (f4) is the new regression line.

Correlation coefficients: stat.r = 0.5754 for the first regression

and for the second regression stat2.r = 0.9168.

The correlation coefficient of the new regression is much closer to 1 that the first one.

As seen from the diagram the new regression line and the data points (without the outlier) show a good fit.

The first regression line gives higher y-values than the new one.

e) Cholesterol level at age 55 predicted by

first model: f1(55) = 5.23 and second model: f4(55) = 5.52.

f)

solve(
$$\mathbf{f1}(x) = 6, x$$
) • $x = 76.9$

First model: Start medication just before age 77.

solve
$$(\mathbf{f4}(x)=6,x) \cdot x=67.3$$

Second model: Start medication just after age 67.