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Foreword

In this thesis, we are interested in solving systems of equations useful in the domain of plasma
physics. Our main focus is on the efficiency of implementations that solve those equations, on
multi-core architectures. Even though the main application of our implementation considered
in this manuscript is plasma physics, it is possible to apply it in other contexts, e.g., astrophysics.

In many cases, when reading scientific articles or manuscripts, several questions remain
unanswered for the reader. Among those unanswered questions, one of them appears in the
vast majority of articles that present an optimization. This question is: “How can the optimiza-
tion(s) presented in a given article be brought into another implementation?”. We identified
several reasons why this occurs:

• a first reason is one’s lack of expertise in the subject. Most of the times, everything seems
straightforward for an expert, and the details needed for the non-experts are not present;

• a second reason is the fact that the field of plasma physics is multi-disciplinary. It contains
high-level mathematics, high-level physics, and high-level computer science. If the focus
of a particular paper is not on the computer science aspect, there is very little chance that
any technical detail will be given in that direction;

• a third reason is the fact that most computer science publications are in conference pro-
ceedings, where there are page limits. In this space, you have to present the background,
convince (mostly the reviewers, but also the future readers) that the work is new and
good, and provide results. There is not so much room for technical details;

• a fourth reason lies in the code itself. Explaining the technical details often means that
you have to show some part(s) of the code. Most of the time, the code is not shown, so it
cannot really be explained. When it is shown, it is mostly with a link to a repository, then
“good luck have fun” to dive into it and understand what is inside.

In this manuscript, our goal is to get rid of the problems identified in the previous items, and
to provide to the non-expert ways to appropriate themselves the work that will be presented.
The focus will thus be given on the computer science part of the work, and we will try to explain
all the parts of the code that need explanations. The implementation has been peer-reviewed
and earned a “Best Artifact Award” at the Euro-Par 2018 conference [206]. A more recent repos-
itory is available at http://www.barsamian.am/Pic-Vert/, that contains some comments in
the different files, in addition to the ones provided in this manuscript. The organization of this
repository is explained in Section 3.4.2. We argue in Chapter 3 that our implementation is 3
times faster than other recent and comparable implementations on the same architecture.

The general structure of this manuscript is the following:

• First, Chapter 1 gives the general context of the present study. Why are we considering
plasma physics? What exact problem are we solving? How can we implement a solution
of this problem and judge of its efficiency?

• Then, Chapters 2, 3, 4, 5, and 8 are devoted to a specific method to solve the problem
considered: the Particle-in-Cell method. Chapter 2 introduces this method, Chapter 3

http://www.barsamian.am/Pic-Vert/
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gives an overview of our contributions, Chapters 4–5 explain the details of our work on
this method, and Chapter 8 concludes this work.

• Chapter 6 is an independent chapter that describes another method to solve the same
problem: the semi-Lagrangian method. It first introduces this method, explains our con-
tributions, and concludes them by showing possible future work.

• Chapter 7 is another independent chapter which explains the numerical results obtained
with our implementations. Although both Particle-in-Cell and semi-Lagrangian methods
are discussed, this chapter can be understood without deep knowledge of those methods.
The main purpose of this chapter is to verify our implementation, by showing that on
particular test cases, it behaves as expected.

In summary, we have two chapters that introduce our work, followed by a brief third chap-
ter explaining our contributions, and finally five chapters explaining the details of our contri-
butions. The general dependencies of the different chapters in this manuscript can be depicted
as follows:

Chapter 1

Chapter 2

Chapter 3

Chapter 4 Chapter 5 Chapter 6 Chapter 7

Chapter 8
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Chapter 1

General Background

During this thesis, we worked on efficient implementations of computer simulations in the
domain of plasma physics. This introductory chapter will give insights into the physical and
mathematical backgrounds that surround the design of this implementation. If any of the no-
tations used are hard to understand, please refer to Chapter A.

First, Section 1.1 motivates the need for simulations in the area of plasma physics, explains
what is plasma, and gives some insights into the physics involved.

Section 1.2 then presents the mathematical equations that govern those simulations, and
some methods to solve them numerically.

Section 1.3 finally introduces what is needed in terms of computer science to understand
the optimizations performed throughout this thesis.

1.1 Some Physical Background

1.1.1 Energy

“ Today our planet is thoroughly wedded to fossil fuels in the form of oil, natu-
ral gas, and coal. Altogether, the world consumes about 14 trillion watts of power,
of which 33 percent comes from oil, 25 percent from coal, 20 percent from gas, 7
percent from nuclear, 15 percent from biomass and hydroelectric, and a paltry .5
percent from solar and renewables.

M. Kaku [24, Chapter 5] ”Mastering energy is not new in human history. After making other animals work for us,
making some first use of “renewable” sources of energy (windmills, water wheels. . . ), we then
discovered new ways to use sources of energies: coal, then oil.

However, what is new with these kinds of energy we are now using in our everyday life
is that they have massive effects on our planet. International summits (e.g., the Kyoto Proto-
col in 1997), international research groups (e.g., IPCC — Intergovernmental Panel on Climate
Change, http://www.ipcc.ch) explain how everything might go wrong if we continue in this
way, and are trying to devise paths to change our future and avoid massive global warming,
see Figure 1.1.

Nowadays, a lot of people praise the “green” energy which they define as the one given by
wind and sun: wind turbines, solar panels. . . It could be the future of our energy, because they
release less carbon dioxide (CO2). However, there are still problems in availability (we cannot
control when wind blows and still need energy when it does not) and in storage (batteries
are not powerful enough to store all the energy produced; pumped-storage hydroelectricity
provide some storage facility, but in a very limited amount). Reducing CO2 emissions with
those renewables is only possible if we reduce our use of fossil fuels. Unfortunately, coal plants

http://www.ipcc.ch
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“[After setting your car on fire] Listen, your car’s temperature has changed before.”

Credits — Randall Munroe, https://xkcd.com/1732/; Sources — Shakun et al. (2012) [168],
Marcott et al. (2013) [161], Annan and Hargreaves (2013) [131], HadCRUT4 (https://www.met
office.gov.uk/hadobs/hadcrut4/), IPCC (http://www.ipcc.ch/).

Figure 1.1 – A Timeline of Earth’s Average Temperature.

https://xkcd.com/1732/
https://www.metoffice.gov.uk/hadobs/hadcrut4/
https://www.metoffice.gov.uk/hadobs/hadcrut4/
http://www.ipcc.ch/
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(that release a lot of CO2) are commonly used to produce energy when wind turbines and solar
panels do not (e.g., during the night).

A source of energy which exists nowadays and has the good property of releasing less
CO2 than the traditional fossil fuels is the energy produced in nuclear power plants, thanks
to the fission of atoms. We must nevertheless acknowledge that nuclear power plants are a
controversial topic today: the Three Mile Island (1979), Chernobyl (1986) and Fukushima (2011)
nuclear accidents changed our acceptance of this energy. Political mistakes did not help either
to make people accept them. We can think of mistakes involving bribing local politicians whose
land have uranium resources, we can think of large amounts of money lost to buy uranium
mines from which nothing can be extracted [196], etc.

Even though fission is today among the energy productions which release the least amount
of CO2, there remains one last problem: when producing energy with fission, some “nuclear
wastes” are created whose half-lives can be greater than 200 000 years. One topic of interest is
thus how to explain with clear symbols, at the places where we stock them, that those wastes
are dangerous so that people will understand these symbols in thousands of years [129]. An-
other topic of interest is to actually build places that can accommodate nuclear wastes for such
a long time [154].

“ Les scientifiques annoncent ainsi l’avènement des piles à combustible, de la
fusion par laser ou par confinement magnétique, des véhicules à hydrogène ou à
sustentation magnétique, et même des centrales solaires placées en orbite autour de
la Terre.1 [24, Chapter 5]

G. Pitron [199] ”Faced with these problems with energy production, researchers try to give life to new forms
of energy production. One of them, which is a major application of our work, is the controlled
thermonuclear fusion. Fusion is a reaction which can be seen as the opposite of fission. Fission
creates energy by “breaking” big nuclei (e.g., uranium) into smaller nuclei. Fusion creates en-
ergy by “merging” small nuclei (e.g., hydrogen) into bigger nuclei. This is a first good point for
fusion because hydrogen is easier to get than uranium: we can produce deuterium and tritium
(the required hydrogen isotopes) and do not need to find mines containing them.

When producing energy with fusion, no direct radioactive wastes are created. But the mas-
sively energetic neutrons created will irradiate the surrounding structure, and there is still re-
search ongoing to know how this can be tamed. It is thus still a major challenge to create energy
thanks to fusion. The international ITER2 project, located at Cadarache (France), aims in this
direction.

Projects like ITER are very costly. Before using big devices such as a 29 m× 28 m tokamak3

— see Figure 1.2 — we have to know what is inside and how it behaves.

“ La fusion est prometteuse, mais ne pourra guère être industrialisée avant la
fin du XXIe siècle.4

B. Barré [192, Chapter 13] ”Before explaining what is inside the big doughnut pictured on Figure 1.2, we must acknowl-
edge that fusion will probably not make energy available for everyday use before the end of

1“Scientist announce the era of fuel cells, of laser fusion or controlled thermonuclear fusion, of vehicles propelled
by hydrogen or by magnetic levitation, and even of solar plants in orbit around the earth.” G. Pitron (translation
by this manuscript’s author)

2International Thermonuclear Experimental Reactor, “The way” (in Latin): http://www.iter.org
3Токамак: тороидальная камера с магнитными катушками (a toroidal chamber with magnetic coils)
4“Fusion is promising, but it will probably not be ready for widespread commercialization before the end of the

XXIst century.” B. Barré (translation by this manuscript’s author)

http://www.iter.org
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Figure 1.2 – The ITER tokamak — artist view. Image courtesy of the ITER Organization

our century. So, even if we think it is a good idea to invest our time and money into this promis-
ing source of energy, we also have to make changes in our everyday lives in order to use less
energy until then. Let us finish this section with an optimistic view and bet that we will make
clear political steps towards the direction of a more reasonable world, where economic growth
will not always be our main goal.

1.1.2 Plasma

“ This reminds [Langmuir] of [...] the way blood plasma carries around red
and white corpuscles and germs. So he proposed to call our ‘uniform discharge’ a
‘plasma’.

H. M. Mott-Smith [164] ”To produce energy with fusion, the idea of the ITER project is to create a plasma inside
a tokamak, then contain that plasma inside with a strong magnetic field. The plasma is the
fourth state of matter, and is believed to form 99% of the mass of the visible universe. Matter
reach this state at very high temperature (> 10 000 K). At this temperature, particles (ions and
electrons) behave differently. Plasma can be found, e.g., in a lightning, in a neon tube, in the
sun. Mastering controlled thermonuclear fusion is thus nothing else than putting the sun in a
doughnut. More information about plasma can be found at http://www.plasmas.org.

To understand how a plasma behaves, we have to study the particles inside it, and thus we
have to track their spatial positions #„x = (x, y, z) ∈ R

3 and their velocities #„v = (vx, vy, vz) ∈ R
3

across time. To track the particles, there are essentially three models in plasma physics:

• the N-body model: in this model, we follow each of the N particles, taking into account
interactions between every couple of particles, hence leading to Θ(N2) interactions. This
model is the most precise one. While there exist formulas for N = 2, this problem requires
approximations even for N = 3. However, because of the complexity of this model, we
may have to wait for quantum computers to use this method efficiently (in a plasma with
N > 1010 particles, there are more than 1020 = 100 000 000 000 000 000 000 interactions);

• the kinetic model: instead of following every particle, we study the particle density f (a
function of seven variables: three for positions, three for velocities, and one for time),
which gives the probability of presence of particles around a given time, a given position
and a given velocity. The different species of particles in the plasma have different impacts

http://www.plasmas.org
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on it, so we have to track one density function per species. Usually, we have electrons and
one type of ions, so we have to track fe (for electrons) and fi (for ions);

• the fluid model: this model can be used when the density function f follows some proper-
ties. We can then have some less costly equations to solve, that give a macroscopic view
of the plasma, rather than a microscopic one.

In this thesis, we focus on the kinetic model: we numerically solve the Vlasov–Poisson
system of equations, see Section 1.2.1. Those equations take place in the so-called phase space (a
six-dimensional space: three for positions, three for velocities). Sometimes we can use simpler
models with less dimensions. For example in our thesis, we simulated test cases in a 1d1v
phase space (1 dimension for positions, 1 dimension for velocities: 2 dimensions in total), but
also in 2d2v, 2d3v, and 3d3v.

1.2 Mathematical Background

1.2.1 Set of equations

“ [...] вследствие большой массы ионов в сравнении с электронами можно их
перемещением пренебречь, т.е. считать ионы фактически неподвижными5

А. А. Власов [178, Section 2] ”The main equation we have to solve is due to Vlasov [178, Equation II]. It can be refor-
mulated as “the distribution function f is conserved along the trajectories of the particles which are
determined by the mean electric field” [35, Section 2.1]. In the non-relativistic case, it means that
d f ( #„x , #„v , t)

dt
= 0, which leads to:

d #„x

dt
︸︷︷︸

#„v

·∇ #„x f +
d #„v

dt
︸︷︷︸

#„a

·∇ #„v f +
dt
dt
︸︷︷︸

1

∂ f

∂t
= 0 (1.1)

He also stated that the only force acting on particles is the electromagnetic force, also called
the Lorentz force:

#„

F ( #„x , t) = q(
#„

E ( #„x , t) + #„v (t)× #„

B( #„x , t)) (1.2)

With the notations:

•
#„

E ( #„x , t): electric field

•
#„

B( #„x , t): magnetic field

Newton’s second law states that, in the non-relativistic case, the sum of the forces is equal
to the mass times the acceleration:

∑
#          „

forces = m · #„a

This law together with (1.2) implies that #„a =
q

m
(

#„

E + #„v × #„

B). Replacing #„a by this value in

(1.1), we get the Vlasov equation that we use throughout this thesis, see (1.3).

∂ f

∂t
+ #„v · ∇ #„x f +

q

m
(

#„

E + #„v × #„

B) · ∇ #„v f = 0 (1.3)

5“[...] because of the large mass of the ions as compared to that of the electrons we can neglect their displacements
i.e., we can practically assume the ions to be immovable” A. A. Vlasov (translation by D. ter Haar)



20 CHAPTER 1. GENERAL BACKGROUND

This equation is coupled with the four Maxwell equations that allow to deduce the self-
consistent fields

#„

Es(x, t) and
#„

Bs(x, t), see (1.4).






div
#„

Bs =
#„

0 Maxwell–Thomson

rot
#„

Es = −
∂

#„

Bs

∂t
Maxwell–Faraday

div
#„

Es =
ρ

ǫ0
Maxwell–Gauss

rot
#„

Bs = µ0

(

#„

J + ǫ0
∂

#„

Es

∂t

)

Maxwell–Ampère

(1.4)

With the notations:

• ǫ0, µ0: vacuum permittivity and vacuum permeability, related to the speed of light: c =
1√

ǫ0 · µ0

• ρ( #„x , t) = q
∫

f ( #„x , #„v , t)d #„v : volume density of electric charge

•
#„

J ( #„x , t) = q
∫

f ( #„x , #„v , t) #„v d #„v : current density

In this thesis, there is no external electric field. In some cases, there are no external fields
at all, which means that the fields are exactly the self-consistent ones:

#„

E( #„x , t) =
#„

Es(
#„x , t) and

#„

B( #„x , t) =
#„

Bs(
#„x , t). In other cases (as in the tokamak of the ITER project), there is an external

magnetic field
#„

Be(
#„x , t) which means that

#„

B( #„x , t) =
#„

Bs(
#„x , t) +

#„

Be(x, t).

In some cases, we can simplify the Maxwell equations: we use the simplifying hypothesis
|| #„v || ≪ c, which implies that we can neglect the current density and the magnetic field. We are
left with only one equation instead of four, a Poisson equation:

−∆ #„x φ =
ρ

ǫ0
where

#„

E ( #„x , t) = −∇ #„x φ( #„x , t)

Most of the time, this thesis will focus on the Vlasov–Poisson system, in the special cases
where:

• there is no external field

• the self-consistent magnetic field is neglected

• the ions are supposed motionless (and neutralize the charge), so we only simulate the
electrons of charge q = −e (where e is the elementary charge)

This gives the system of equations (1.5).






∂ f

∂t
+ #„v · ∇ #„x f +

q

m

#„

E · ∇ #„v f = 0 Vlasov

−∆ #„x φ =
ρ

ǫ0

(

=
q

ǫ0

(∫

f ( #„x , #„v , t)d #„v − 1
))

Poisson
(1.5)

Moreover, in this thesis we will work in an dimensionless world where e = m = ǫ0 = 1
(hence q = −1). Sometimes, we will add an external constant magnetic field, sometimes we
will simulate both electrons and ions, and we will have to change the system accordingly.
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1.2.2 Numerical Approximations

“ On pourroit aussi construire une table des différences premières & l’employer
seule. [...] [L]e procédé est aussi exact que la méthode des secondes différences,
mais il est moins commode. Ce qui vient en partie de ce que [...] pour les différences
premières il faut les prendre dans la table subsidiaire avec (u + 1

2 du).6

J.-B. Delambre [142, Article X] ”Recall that it is difficult to prove the existence of solutions for the general system in a rig-
orous way. Let us allow ourselves the shortcut f (t) = { f ( #„x , #„v , t) | ( #„x , #„v ) ∈ phase-space},
which represents all the values of f at time t. We thus have no formula giving f (t) for all t.

Numerical Schemes

We use a numerical method to have approximations of the solution:

• f (0) is known (initial condition)
• choose a “small” ∆t (time step) and n (number of time steps)
• deduce f ∗(∆t), an approximation of f (∆t), from f (0)
• then f ∗(2∆t), an approximation of f (2∆t), from f ∗(∆t)
• then f ∗(3∆t), an approximation of f (3∆t), from f ∗(2∆t)
• . . .
• and f ∗(n∆t), an approximation of f (n∆t), from f ∗((n− 1)∆t)

Euler proposed a numerical scheme [13, Part I, Section II, Chapter VII, Problem 85] that
we here sketch when working with functions from R to R. The unknown is f ; we know g, a
differential equation f ′(t) = g(t), and f (a); we wish to know f (b). “Close enough” around
any value x, f behaves like an affine function (its derivative), which is to say that, for x ∈ [a; b]
and for small values of h,

f (x + h) = f (x) + h · f ′(x) + O(h2) (Taylor expansion, first order) (1.6)

With n steps of size ∆t = b−a
n , we may retrieve a good approximation of f (b), by stating

that:







f ∗
(

a + b−a
n

)

= f (a) + b−a
n · g(a)

∀2 ≤ k ≤ n, f ∗
(

a + k · b−a
n

)

= f ∗
(

a + (k− 1) · b−a
n

)

+ b−a
n · g

(

a + (k− 1) · b−a
n

)

The Euler scheme is a first order method: the error is at most proportional to ∆t7. A more ac-
curate (second order) numerical scheme is the leap-frog method, which has been (re)discovered
a lot of time, see e.g., [142, Article X], [172, Chapter III], [176], hence its name, the Verlet–
Störmer–Delambre algorithm. Its application to the Particle-in-Cell (PIC) method is explained
in [5, Section 2.4].

Other well-known numerical schemes are the Runge–Kutta methods [18, Chapter 2], which
can be of any order8. Last but not least, there are also some splitting methods which are specific

6“One might also construct a table of the first differences & use it alone. [...] [T]his process is as exact as the
second differences method, but is less practical. This partly comes from the fact that [...] for the first differences,
one has to take them in the auxiliary table with (u + 1

2 du).” J.-B. Delambre (translation by this manuscript’s
author)

7We have n steps, and at each step the error is at most proportional to ( b−a
n )2, see (1.6). The constant thus

depends on the length of the interval |b− a| and on supx∈[a;b]|g′(x)|.
8In fact, the Runge–Kutta method of first order is the Euler method.



22 CHAPTER 1. GENERAL BACKGROUND

to some kind of differential equations, e.g., [94] for the Vlasov equation, which can be used in
the semi-Lagrangian method.

Method of Characteristics

Using one of those numerical schemes is not straightforward to solve the Vlasov–Poisson sys-
tem, because the Vlasov equation is a partial differential equation. It is easier to solve ordinary
differential equations. This can be done with the help of the method of characteristics [15,
Section 1.4][14, Section 3.2].

The idea is to use parametric functions instead of the variables t, #„x and #„v . We thus intro-
duce three functions T : R → R,

#„

X : R → R
3 and

#„

V : R → R
3. We search a differential

equation which involves f (
#„

X(s),
#„

V(s), T(s)). We now compute
d f (

#„

X(s),
#„

V(s), T(s))

ds
which

leads to:

d
#„

X(s)

ds
· ∇ #„x f (

#„

X(s),
#„

V(s), T(s)) +
d

#„

V(s)

ds
· ∇ #„v f (

#„

X(s),
#„

V(s), T(s)) +
dT(s)

ds
∂ f

∂t
(

#„

X(s),
#„

V(s), T(s))

Now if we set
d

#„

X(s)

ds
=

#„

V(s),
d

#„

V(s)

ds
=

q

m

#„

E(
#„

X(s), s) and
dT(s)

ds
= 1, we recognize the

left-hand side of the Vlasov equation (1.5). This is thus what we do. We choose T(s) = s as a

natural solution of
dT(s)

ds
= 1 and we thus find that the characteristics of the Vlasov equation

are solution of the system of ordinary differential equations (1.7).






d
#„

X(s)

ds
=

#„

V(s)

d
#„

V(s)

ds
=

q

m

#„

E (
#„

X(s), s) (Newton’s second law)

(1.7)

We also have a very important property of f , which comes from the Vlasov equation (1.5).

This equation tells us that
d f (

#„

X(t),
#„

V(t), t)

dt
= 0 which means that we have the following

property:

If f is a solution of the Vlasov–Poisson system, then f is constant along the characteristics of
the Vlasov equation.

Property of the Vlasov–Poisson system

This property allows us to follow f in time by simply following the characteristics.

Verification of the Implementation

In order to verify our implementation and understand how much error is made by the numer-
ical simulation, we have some test cases on which we have almost-exact theoretical solutions,
thanks to a dispersion analysis, e.g., [157]. Some test cases and their theoretical solutions can
be found in [35, Chapter 4]. We also designed new test cases with their theoretical solutions
during this thesis [207].

Space Discretization

In addition to errors inherent to the discretization of time, we must also cope with errors in-
herent to the discretization in space. With computers that have only finite memory, we cannot
have access to all the “values of

#„

E at time t”: for a given t, a computer cannot store
#„

E ( #„x , t) for
all #„x . We store values on a grid, for example for the x-axis:
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• the physical space in which the particles evolve can always be chosen as [xmin; xmax]:

– when it is periodic (e.g., a torus), we choose xmax − xmin = period (periodic bound-
aries)

– when it is closed (particles do not go further than a given limit), we know that f is 0
beyond this limit (free boundaries)

– in some other cases, the physical space is evolving at each time step, i.e. xmin and
xmax depend on time (moving window)

• we choose a “small” ∆x and store only
xmax − xmin

∆x
different values on the x-axis

• for each time step, we only store
#„

E values on the grid

1.3 Some Computer Science Background

Our goal in this thesis is to design efficient parallel algorithms. It is exactly the same task as
when you want to cook as fast as possible with friends. The algorithm will be your recipe, and
the parallelism will come from the different persons working at it.

• Butter and flour a soufflé dish.
• Put the dish into a fridge.
• Preheat the oven to 200 °C
• Wash and stalk 300 g of fresh spinach.
• Cook the spinach with 10 g of butter in a frying pan for 4-5 minutes.
• Drain the spinach and chop them with a knife.
• Separate 4 egg whites and yolks.
• Prepare 300 mL of béchamel sauce.
• Mix the béchamel, the yolks, the spinach and a pinch of curry powder.
• Whisk the egg whites with a pinch of salt.
• Incorporate them delicately to the previous mixture with a spatula.
• Fill the dish with that mixture.
• Cook it in the oven for 30 minutes, door closed.
• Serve it as soon as it is ready.

Figure 1.3 – Spinach soufflé recipe.

Figure 1.3 shows a really good cooking recipe: a spinach soufflé — adapted and translated
from https://cuisine.larousse.fr/recette/souffle-aux-epinards. First, the recipe con-
tains a lot of small orders, that everybody understands (butter, flour, put, preheat, wash, stalk,
cook, drain, chop, separate, mix, whisk, incorporate, fill, serve). They correspond to what is
called instructions of an algorithm. Then, there is a special line that we might not understand
(prepare a béchamel). It corresponds to what is called a function. If we do not know what this
function is doing, we can always go and check for the instructions given in its definition. There
sure is a cooking recipe for a béchamel sauce elsewhere. Finally, there is an order in which those
instructions have to be executed. Following the order given in the recipe will always work, but
some reordering might be possible without changing the final result in some cases. For exam-
ple here, you may separate the eggs at the very beginning of the recipe without changing the
result (e.g., if you fear to break the yolks, as they tend to break more easily when the eggs are
warmer).

Knowing when we can reorder instructions is one of the keys to cook with friends. Trying
to make multiple computers cooperate on a given program (the goal being to compute faster)
is parallelism. You have multiple options to cook in parallel:

https://cuisine.larousse.fr/recette/souffle-aux-epinards
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• You can do different tasks in parallel. A common solution to cook with friends is to have
each of you participate on different parts (starter, meal, desert). Even inside one of those
parts, sub-tasks can be performed at the same time (e.g., the preparation of the spinach
and of the béchamel sauce).

• You can pick a task, and divide it among the participants. Here, stalking the spinach takes
some time, and you can do it efficiently in parallel: each person will take a portion of the
spinach and stalk it, at the same time as others.

• You can pipeline different tasks. This option does not come naturally in our previous exam-
ple, but comes naturally to our mind when we then think of the desert we will make after
this delicious soufflé: an apple pie. It is quite natural and efficient to have someone peel
the apples and someone else cut them. At first, the one in charge of cutting them has no
apple to cut, then as soon as the first apple is peeled, he has work to do until the end.
Conversely, the one in charge of peeling has work to do from the beginning, but has no
apple to peel when the other one is cutting the last apple (things may vary a little if peel-
ing and cutting an apple have two substantially different timings). The idea is to gain
time because only one action is performed. Using this technique with humans should
always be made with care [195], but it is great with specialized computer chips.

In our thesis, we will focus on the second item: divide tasks among participants. In a perfect
world, asking 2 people to perform a task which would take 1 hour for 1 person should lead to a
30 minute task. The perfect speedup (timing when performing the task alone divided by timing
when doing it with multiple people) is 2. However, some parts of a program do not behave
that well. For example, even if we divide the soufflé in ramekins and no matter how many
ovens we have, we still have to wait 30 minutes for the final cooking. The rest of the recipe
takes approximatively around 30 minutes also for 1 person. We thus realize that, with 2 people
working on the recipe, we cannot make it in less than 45 minutes. Which corresponds to a
speedup of 4

3 ≈ 1.33. We re-discovered the so-called Amdahl’s law [130]. Amdahl roughly
stated that the inherently sequential part of any program will become the main bottleneck for
parallel programming. Fortunately, his prediction was not so good and in our target programs,
those parts are so tiny that they are negligible even in parallel, and do not affect the speedup.

1.3.1 Parallelism

“ Today parallelism is available in all computer systems, and at many differ-
ent scales starting with parallelism in the nano-circuits that implement individual
instructions, and working the way up to parallel systems that occupy large data
centers.

U. A. Acar & G. E. Blelloch [1, Section 1.1] ”Realistic simulations involve trillions of bytes of memory9, and are executed for millions of
time steps. A typical personal computer has around 4 to 16 GB (billions of bytes) of memory.
For example our everyday computer has 16 GB of memory. Asking for 8 additional GB from
the usual 8 GB available on the model on which this manuscript was written costs 100€. This
memory is far from being enough to run realistic simulations. Even computers specialized for
scientific computation do not have enough memory. They typically have 100 GB of memory.
We thus cannot avoid the use of multiple computers and therefore use clusters of multiple
computers, or so-called supercomputers.

Executing programs on those machines requires to have at least some basic knowledge
about parallel programming and about modern computer architecture. We will try to fill that
gap, if needed.

9A byte is 8 bits, where a bit is 0 or 1, the basic unit of computation of a computer.
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Because we are working on a cluster of computers, we cannot work without the distributed
memory paradigm. Fortunately, this is the easiest model and in fact, everything can be pro-
grammed with this model. But if we want to unleash the full power of our machines, we have
to also use the shared memory paradigm.

The difference between the two models is quite easy to understand. Suppose you run a
flower company. You have one shop in Amiens (Somme, Hauts-de-France, France) and an-
other one in Le Touquet (Pas-de-Calais, Hauts-de-France, France). A customer enters the first
shop and asks for a bunch of yellow roses. The seller checks for availability, sees he can ful-
fill his client’s desire, and sells him what he wants. In the other shop, quite at the same time,
the same scenario occurs. No problem is involved. At the end of the week, the two shops
synchronize together to know the total number of flowers of each kind. When working with
distributed memory, you thus need to distribute your data (here, the flowers) among the differ-
ent computing units (here, the shops), ensure that everybody can work with its own part of the
data, and then put together all the computations done to get the final result and/or put back all
the pieces of data together (here, get the flowers stock and the cash incomes). Whenever some
unit wants to access parts of data it does not have, it can ask a colleague, but this will take some
time (here, sending some flowers from one shop to the other will probably takes some hours),
and you have to ensure that its colleague is expecting such demands — or else, it will never
answer.

Suppose now that we are not in two different shops, but in the same shop with two different
sellers. Suppose now this — not very likely in everyday life, but very likely on a computer —
scenario occurs: two customers enter the shop. The first one asks for a bunch of five yellow
roses, and the first seller goes into the storage room to check for availability and price. He sees
seven yellow roses, and goes back to say that there is no problem. His client agrees to buy them
at the indicated price. At the same time, another client wants a bunch of three yellow roses. The
second seller goes into the storage room just after his colleague, still sees seven roses, and goes
back to say that there is no problem. The first client asks for other flowers, while the second
one wants to end his shopping. The second seller goes and fetches the three asked roses, and
his client goes out with satisfaction. When the first client has finished choosing flowers, the
first seller goes back into the storage room. . . only to find that there are now only four roses
left. Of course, to avoid such scenarios, each seller can take the flowers with him when he
checks for availability. In computer science, we would call that an atomic operation. Rather
than just checking a number, then trying later to change its value, we do it in only one pass. If
someone else wants to access the value in the meantime, he cannot, because the value is locked
during atomic operations. This avoids this scenario, which is called a race (two different actors
accessing the same datum while at least one of them is modifying it). Of course there is no
problem when the two accesses are only reads (both sellers can check the price of a same item
without problem). We here saw one benefit of shared memory, together with one of its common
pitfalls. When sharing the storage room, the two sellers need not to synchronize to know how
many flowers they still have. But they need to be careful when modifying the stock.

The previous example sketched a very common bug when programming with the shared
memory model. However, we are not interested only in bug-free simulations, we also want
fast simulations. Suppose now that the two sellers of the same shop avoided races by handling
the flower stocks on different stages of the storage shelf. The first seller might have the respon-
sibility to handle the roses, on the two lower stages of the shelf. The other one might have the
responsibility to handle the sunflowers, on the two upper stages of the shelf. What can happen
is that they both need flowers on the shelf at the same time. When this happen, they will prob-
ably bother each other, because they are both in front of the same shelf. This scenario occurs on
computers if two different actors access two different data that are “ too close” in memory: it is
called a false sharing. First we have to understand that data is organized not number by number
but block of numbers by block of numbers in memory. If two different actors access two num-
bers in the same block, the system cannot be sure that they access two different numbers, and
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thus has to take care of the special case where they would access the same number inside this
block. To be sure that this never happens, we can put the roses and sunflowers on two different
shelves. Seeing that the two actors are operating on two different block of numbers, the system
now knows for sure that no race can happen.

Following the work of many other colleagues in the scientific computing community, we
will focus in this thesis on the OpenMP [182] language extension (for C, C++ and Fortran) for the
shared-memory parallelism. The different workers in OpenMP are called threads, they are the
different sellers in our flowers example. There are a lot of possibilities from OpenMP that we
will use in this thesis, but also many others that we will not use. For example OpenMP enables
what is called task-based parallelism that is used in some PIC implementations, e.g., OSIRIS [33,
Section 8.6]. In this thesis, we did not use tasks.

1.3.2 Vectorization

“ Skill and knowledge of vectorization is absolutely ESSENTIAL to gain perfor-
mance on the Intel® Xeon Phi™ product family.

https://software.intel.com/en-us/articles/vectorization-essential ”We have seen distributed-memory parallelism and shared-memory parallelism. There is a
third level of parallelism, the vector-level parallelism.

Vectorization is the transformation of the kind of code shown in Listing 1.1 into the one
shown in Listing 1.2. In the example, A, B and C are arrays of doubles, and we assume that we
can do 4 double floating-point operations at once, which requires vectors of size 256 bits (one
double takes 64 bits of memory).

1 for (i = 0; i < 1024; i++)

2 C[i] = A[i] + B[i];

Listing 1.1 – Code without vectorization.

1 for (i = 0; i < 1024; i+=4)

2 C[i:i+3] = A[i:i+3] + B[i:i+3];

Listing 1.2 – Vectorized code.

Listing 1.1 uses scalar instructions. The computer loads A[0] and B[0] in two scalar regis-
ters, computes A[0] + B[0], stores the result into C[0], then loads A[1] and B[1], computes
A[1] + B[1], stores the result into C[1]. . . On “modern” architectures, there is a possibility, if
you apply the same instruction on multiple contiguous data (an array), to apply it block of ele-
ments by block of elements, instead of element by element. The computer uses vector instruc-
tions rather than scalar instruction. In Listing 1.2, the computer loads A[0]A[1]A[2]A[3] in a
vector register, similarly loads B[0]B[1]B[2]B[3] in another vector register, computes the four
additions in one vector instruction, and stores back the vector result into C[0]C[1]C[2]C[3]. . .
If the data is not contiguous in memory — you may have indirect accesses (e.g., A[f(i)]), non-
unit strides (e.g., when using array of structures) — then you may still vectorize the operations
but you would need so-called gather and/or scatter operations to load and/or store the non-
contiguous data from and/or to memory.

This parallelism is known under the name SIMD (Single Instruction Multiple Data), and to
reach the peak computing performance given by architecture manufacturers, you have to use
vector instructions.

In the work presented in this thesis, we carefully wrote our code in order to benefit from dis-
tributed memory, shared memory and vector parallelism. See in Section 4.3.4 for applications
in a PIC implementation.

https://software.intel.com/en-us/articles/vectorization-essential
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1.3.3 Efficiency

“ Note that metrics such as flop/s or percentage-of-peak are less relevant for the
predominantly memory-bound gyrokinetic PIC methods, as modern architectures
require 10 flops per byte moved from DRAM in order to be compute-limited.

W. Tang, B. Wang, S. Ethier, G. Kwasniewski, T. Hoefler, K. Z. Ibrahim, K. Mad-
duri, S. Williams, L. Oliker, C. Rosales-Fernandez and T. Williams [83] ”Most of the work achieved during this thesis concerns the optimization of a PIC implemen-

tation. Yet, many questions arise if we start to think of optimization:

• How to measure the performance of an implementation?

• How to read/understand performance results?

• How to compare the performance of two different implementations?

To study the performance of our implementation, throughout this thesis, performance
measurements were performed with the addition of some lines in the code to get the execution
time. It is not new that observing a phenomenon might change that very phenomenon [139].
We took great care to verify that this was not the case here. We can get more detailed informa-
tion thanks to the use of more complex tools, but we chose the simplicity of this approach.

To study the parallel performance of an implementation, there are usually two tests.
The first test is the strong scaling: we start with a problem of size N solved by P processors.

Then, we add some processors, while keeping the total problem size N constant. This shows
how suited is the program to solve a given problem on bigger machines.

We say that we have an ideal parallelism if, when multiplying the number of processors by
k, the problem is solved k times fastera.

aRemark: sometimes, super-linear effects are observed: the problem is solved more than k times faster. This
happens for example when the division of the problem into smaller ones leads to better cache re-use. In that case,
it means that the sequential implementation can probably be improved to also benefit from better cache re-use.

Ideal parallelism (strong scaling)

The second test is the weak scaling: we start with a problem of size N solved by P proces-
sors, which gives us a problem size per processor N/P. Then, we add some processors, while
keeping the problem size per processor N/P constant. This shows how suited is the program
to solve bigger problems on bigger machines.

When considering a problem with linear complexity — Θ(N), like the PIC algorithm —, we
say that we have an ideal parallelism if the execution time does not change while increasing
the number of processors.

Ideal parallelism (weak scaling)

For example let us look at Figure 1.5, starting from 8 cores (the behavior from 1 to 8 cores
is explained hereafter). We see that we have an almost ideal weak scaling up to 512 cores,
then our execution time grows whereas it could be constant. This is due to the parallelization
scheme chosen that adds a logarithmic factor in the execution time, as discussed in Section 2.6.

Once we know how much time each part of our code takes, it is easy to compare two dif-
ferent implementations. But this tells us nothing about the absolute efficiency of our imple-
mentation. In the abstract of our first article [204], we report that “our code processes 65 million
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particles/second per core on Intel Haswell (without hyper-threading)”. How good is that? Later on,
we see that there is a “bump” in efficiency when going from 4 to 8 threads [204, Figure 7], see
Figure 1.5. How bad is that? Let us find out.

To extract information from the performance results, and have an intuition of what should
be a good or a bad result, we need to have at least some basic knowledge about computer
architecture, and about properties of our implementation. We could escape this discussion
when dealing with basics of parallelism, but now that this introduction is coming to an end,
we cannot delay it anymore.

Whenever a computation is performed (e.g., C[i] = A[i] + B[i], line 2 of Listing 1.1), a
computing unit will take care of the computation. Before the computation can take place, the
data (here, A[i] and B[i]) has to be loaded from the main memory. After the computation, the
result (here, C[i]) has to be put in the main memory. In some cases it is a little bit different,
but if we are doing this operation on big arrays, this is a really good approximation of what
is happening. There are thus two main architectural properties which will contribute to the
global efficiency of this loop:

• At which rate can the computations be performed? This is the frequency of our processor.

• At which rate can the data be accessed? This is the memory bandwidth of our processor.

There is a simple but very useful model that tells us what we can expect from a given
implementation, knowing those architectural parameters: the roofline model [180]. When we
have a lot of memory to load and write but not a lot of operations to perform, we are limited by
memory bandwidth. We say that we are memory bound. This is the case for a PIC algorithm (we
have Θ(N) data to read and write, and Θ(N) operations to perform on those data). When we
have not a lot of memory to load but a lot of operations to perform, we are limited by floating-
point performance. We say that we are compute bound. This is the case for example for usual
(dense) matrix multiplications (we have Θ(N2) data to read and write, and Θ(N3) operations
to perform on those data10). The parameter we have to look for is thus the operational intensity
of our implementation. How many floating-point operations do we have per byte we have
to move from and to memory? In Listing 1.1, if the arrays contain doubles (one double takes
8 bytes for storage), we have one operation for 24 bytes moved. This operational intensity is
extremely low on modern architectures, and thus our loop will be memory bound. This loop is
in fact used in a benchmark to test the maximum memory bandwidth that can be reached: the
Stream benchmark [162]. In general, the reachable peak is lower than the theoretical one.

Some paragraphs ago, we wanted to know whether “65 million particles/second” was a
good performance result on 1 core. We can now draw the roofline model for our architecture
and implementation, see Figure 1.4. Our architecture can attain 68 GB/s for 4 memory chan-
nels11, thus 17 GB/s for 1 core. The frequency is 2.3 GHz and the maximum number of single
precision floating-point operations per cycle is 3212, thus the maximum number of operations
per second is 73.6 GFlops/s. Our 2d implementation performs 62 operations per particle, and
requires ≈ 103 bytes moved per particle. This gives us an operational intensity of ≈ 0.60. For
this intensity, no implementation can exceed 8.3 GFlops/s, so our implementation that achieves
4.5 GFlops/s is not that bad. Please note that this graph is not sufficient to analyze the perfor-
mance of a given implementation. Even if we attained the Stream line, nothing tells us that
the performance of the implementation cannot be further improved. We later on designed al-
gorithms that require less memory transfers. Thus, the operational intensity increases, and the
maximum reachable performance increases.

10There exist algorithms for dense matrix multiplications with lower complexity, e.g., the Strassen algorithm in
Θ(Nlog2(7)) [174] or more recently Θ(N2.3728639) [158], but for values of N that can be handled by a typical computer,
using optimized variants of the naive Θ(N3) algorithm leads to the best execution times.

11http://ark.intel.com/products/81705
12https://en.wikipedia.org/wiki/FLOPS

http://ark.intel.com/products/81705
https://en.wikipedia.org/wiki/FLOPS
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Figure 1.4 – Roofline model for our 2d implementation on 1 core of Intel Haswell.

This model tells us what can be achieved once we have fixed properties for our architecture
and our implementation. There is one last step to understand when we are studying scaling
properties of an implementation on a processor. On modern architectures, we have more cores
than memory channels. Some paragraphs ago, we wanted to know whether it was expected or
not that there was a “non-perfect” scaling on our implementation, when going from 4 to 8 cores.
Our architecture has 8 cores but only 4 memory channels. With 1 core, this core can use a
memory channel. With 2 or 4 cores, each can use a memory channel. But once we reach 8 cores,
they will need to share the memory channels. Because our implementation is memory bound,
it is thus not a surprise to have this kind of behavior, see the weak scaling (the problem size per
processor is constant, thus the total problem size increases with the number of processors) on
Figure 1.5.

Comparing efficiency of multiple implementations is a very difficult task. Direct compar-
ison between the performance results from two papers is hard to make, for multiple reasons:

• The architecture parameters usually vary between two papers. We first need to normalize
the results depending on the architecture parameters. In this thesis, we propose a nor-
malization which is useful for PIC implementations as well as for any memory-bound
implementation: we scale the results depending on the maximal memory bandwidth of
the different architectures. This gives a first insight of how well a given implementation
behaves with respect to another one, even if the maximal memory bandwidth is not the
only useful parameter.

• The implementation details probably vary (for a PIC implementation it can be equations,
initial conditions, precision, orders for interpolation and time-stepping. . . ).

To truly compare two implementations, we would need to run them on the same architec-
ture, with the same parameters. It is usually impossible because we rarely have access to the
code from another paper, and when we have it, running it on a given architecture might not be
fair, as this implementation might not have been optimized for this target architecture. The two
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teams that wrote those codes would thus have to cooperate a lot, just in order to compare the
performance of their own implementations. This huge amount of time needed is most often
not available.
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Chapter 2

Preliminaries to the Particle-in-Cell
Methods

In this chapter, we introduce the Particle-in-Cell methods. The primary goal of this chapter is
to give a general overview of the classical tools needed for this method, and will thus be useful
mostly for someone encountering this method for the first time. Nevertheless, this chapter
will also introduce a lot of material that will be useful in Chapters 4 and 5, devoted to the
optimization of a Particle-in-Cell implementation.

Section 2.1 first gives the general idea of the method, together with a high-level description
of the different steps needed. Then, we describe in detail the choices a programmer has to make
for the different building blocks needed:

• the data structures, in Section 2.2;
• the particle initialization, in Section 2.3;
• the Poisson solver, in Section 2.4;
• the interpolation schemes, in Section 2.5;
• the process-level parallelism, in Section 2.6.

Finally, Section 2.7 gives links to some other PIC implementations.

2.1 Overview

Let us first recall that, in the case where there is no other external field and the self-consistent
magnetic field is neglected, we solve the system (1.5), which we also give here:







∂t f + #„v · ∇ #„x f +
q

m

#„

E · ∇ #„v f = 0 Vlasov

f ( #„x , #„v , 0) = f0

−∆φ =
ρ

ǫ0
Poisson

where

ρ( #„x , t) = q

(∫

f ( #„x , #„v , t)d #„v − 1
)

and
#„

E( #„x , t) = −∇φ( #„x , t).

In this system, f = f ( #„x , #„v , t) stands for the distribution of one species of particles (with
charge q and mass m) in a six-dimensional phase space (three dimensions for positions and
three dimensions for velocities), ρ stands for the charge density, and E for the self-consistent
electric field.
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Figure 2.1 – Discretization of f (red) and of the physical space (black).

To solve this system with the PIC method, we approximate the distribution function by a
collection of N macro-particles (or numerical particles), see formula (2.1), where δ is the dis-
tribution of Dirac [11, Section 15]1. Theoretical properties of this approximation can be found
in [77].

f ( #„x , #„v , t) ≈
N

∑
k=1

weightk · δ( #„x − #„xk(t)) · δ( #„v − #„vk(t)) (2.1)

One numerical particle represents many real-life particles. This is represented by weightk

which is the weight of the kth particle. There are many ways to handle those weights.
A first question is: how to set the initial weights according to the initial density function f0?

One idea is to uniformly split the phase-space and to put, in each cell, a particle whose weight
is equal to the integral of f0 on this cell [52]. Another idea is to (pseudo- or quasi-) randomly
pick particles according to f0. In this case, all the particles have the same weight:

∀k, weightk = w =
1
N

∫

f0 d #„x d #„v .

A second question is: will the number of particles and their weights evolve in time? The δ f
PIC method does not try to resolve the full distribution function f , but, to reduce noise in the
simulations (see next paragraph), expands the distribution function into an equilibrium solu-
tion F and a small perturbation δ f . In this method, the weights depend on time [39, 76]. Even
when coping with the full distribution function, there are methods that change the number
of particles and their weights over time, by splitting and merging some particles when neces-
sary [67]. It is nevertheless possible to avoid those considerations and to keep the number of
particles and their weights constant over time.

Those particles interact via the self-consistent electric field, which is also discretized on
a grid. Figure 2.1 represents particles in red and grid quantities in black. When using a low
number of grid cells and a low number of particles per cell (Figure 2.1, left), two problems arise.
First, the number of grid cells is not sufficient to take into account physical effects on small
scale, thus we have to increase the grid sizes (Figure 2.1, middle), sometimes up to ≈ 1 000
per direction. Second, we face numerical noise when the number of particles is small, for two
reasons: (a) when initializing particles randomly, we face the traditional stochastic convergence
of Monte-Carlo methods in 1√

N
[20, Section 2.4] and (b) for smooth particle simulations, one

should increase the number of particles per cell [41, 77] (Figure 2.1, right), sometimes up to
≈ 10 000− 1 000 000.

1Its cumulative distribution function is the Heaviside function: H(x) = 0 when x < 0 and H(x) = 1 when x ≥ 0.
As a small abuse of notation, we can see the δ distribution as having the following property: for each function f ,
∫

R

f (x)δ(x)dx = f (0). This will be enough for our needs.
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Parameters
N: number of particles.
ncx× ncy× ncz: number of grid cells.
∆t: time step.
f0: initial distribution function.
q and m: particle charge and mass.

Variables
particles[N]: set of particles, with

position xp and velocity vp.
ρ[ncx][ncy][ncz]: charge density.
E[ncx][ncy][ncz]: electric field.

Algorithm
1 Randomly initialize N particles following f0
2 Compute initial ρ and E
3 Foreach time step Leap-frog
4 If (condition), then
5 Sort the particles
6 Set all cells of ρ to 0
7 Foreach particle
8 Interpolate E at xp Stored in Ep

9 Update vp vp +=
q
m ∆t Ep

10 Update xp xp +=∆t vp

11 Accumulate charge from xp on ρ

12 Compute E from ρ Poisson solver

Figure 2.2 – High-level description of the Particle-in-Cell (PIC) method.

1 // Six doubles .

2 struct { double position_x , position_y , position_z ,

3 velocity_x , velocity_y , velocity_z ; } particle1 ;

4
5 // Index plus offset.

6 struct { int i_cell;

7 float dx , dy , dz;

8 double vx , vy , vz; } particle2 ;

Listing 2.1 – Data structures for 3d particles.

Those numerical particles move in the phase space following the characteristics given in
the system (1.7), which we also give here:







d #„x

dt
= #„v

d #„v

dt
=

q

m

#„

E

In a PIC simulation, first the particles and the fields have to be initialized. Then, considering
a leap-frog time-stepping — see Section 1.2.2 [5, Section 2.4] — (second-order in time), five
operations have to be performed at each time step, as shown in Figure 2.2. First, the electric
field is interpolated to the particles (line 8), in order to update the particle velocities (line 9). The
particle positions are updated with those new velocities (line 10)2. Then, the particle charge is
accumulated on the spatial grid (line 11). Finally, the Poisson equation is solved to obtain the
grid electric field (line 12).

Before going into the details of those steps, we will first explain the main data structures
and the initialization of the particles.

2.2 Data Structures

2.2.1 Particle Data Structure

One central aspect in the design of a PIC implementation is how the particles are stored in the
shared memory. A first approach is to represent each 3d particle with 48 bytes (6 doubles) to
describe its position and velocity, see Listing 2.1 (top).

2In the literature, the velocities and positions updates are often considered together in a unique “push”
operation.
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Figure 2.3 – A 2d particle: the physical space is normalized to [0; ncx)× [0; ncy).

A more efficient approach is the “index plus offset” representation [47, Section III.E.]. Po-
sitions are represented as a combination of a cell index and normalized offsets within this cell,
see Figure 2.3.

We denote the physical space by [xmin; xmax)× [ymin; ymax)× [zmin; zmax). We use a grid on
this physical space: ncx grid points on the x-axis, ncy grid points on the y-axis and ncz grid
points on the z-axis, as introduced in Figure 2.2. We thus have grid spacings defined by ∆x =
(xmax− xmin)/ncx, ∆y = (ymax− ymin)/ncy and ∆z = (zmax− zmin)/ncz. The idea of the “index
plus offset” representation is to store positions not on the physical space, but on the normalized
space [0; ncx) × [0; ncy) × [0; ncz). Thus, a particle positioned at (xphysical, yphysical, zphysical) in
the physical space is represented on this normalized space at the position (x, y, z), where

x =
xphysical − xmin

∆x
, y =

yphysical − ymin

∆y
and z =

zphysical − zmin

∆z
.

Then, we consider the integers

ix = ⌊x⌋ , iy = ⌊y⌋ and iz = ⌊z⌋ ,

and the normalized offsets (which are reals in [0; 1))

dx = x− ix, dy = y− iy and dz = z− iz.

The cell index icell in {0, 1, . . . , ncx · ncy · ncz − 1} is the image of some one-to-one mapping
depending on (ix, iy, iz). Commonly in C, the row-major mapping, see formulas (2.2), is used.

(ix, iy, iz) 7→ icell = (ix · ncy + iy) · ncz + iz

icell 7→







ix =
⌊

icell
ncz·ncy

⌋

iy = mod
(⌊

icell
ncz

⌋

, ncy
)

iz = mod(icell, ncz)

(2.2)

With this representation, a particle is stored in memory with 40 bytes: one 32-bits int (icell),
three floats (dx, dy and dz) and three doubles (vx, vy and vz), see Listing 2.1 (bottom).

There are two common data structures possible to store N particles with these 7 attributes.
One can store the particles using one single array of size N; in this array, each cell contains the
7 attributes (e.g., using the type particle2). This is the Array of Structures (AoS) data structure
(Listing 2.2, top). One can also store the particles using seven arrays of size N: one array per
attribute. This is the Structure of Arrays (SoA) data structure (Listing 2.2, middle).

One can also use more complex data structures. For example, it can be more efficient to
keep, at each time step, all the particles that reside in the same cell together. This is known
as the strict-binning approach. It can be implemented with the Packed Memory Array (PMA)
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1 // Array of Structures (AoS), see Listing 2.1. Array of size N.

2 struct particle2 * particles ;

3
4 // Structure of Arrays (SoA). Arrays of size N.

5 int* i_cell;

6 float* dx; float* dy; float* dz;

7 double* vx; double* vy; double* vz;

8
9 // Strict - binning with SoA. Arrays of size (N * stretch), where stretch ≥ 1

10 // depends on implementation , see [144, 72].

11 float* dx; float* dy; float* dz;

12 double* vx; double* vy; double* vz;

13 int particle_sets_begin [ncx * ncy * ncz ]; // Index of first particle in a cell .

14 int particle_sets_sizes [ncx * ncy * ncz ]; // Number of particles in a cell .

Listing 2.2 – Data structures for the array of particles.

data structure (Listing 2.2, bottom [144, 72]): instead of having arrays of size N, arrays are
“stretched” to be able to contain all the particles plus some empty cells, for efficiency.

The main drawback of the index plus offset representation is that we are limited in the
grid discretization. With a 32-bit integer, the i_cell values cannot be greater than 231 =
2 147 483 648 (or 232 − 1 = 4 294 967 295 if we choose unsigned int3), which means that
our grid size cannot exceed ≈ 1 000 × 1 000 × 2 000. Of course a possible way to get rid of
this restriction is to use 64-bits integers, but then this representation brings only small benefits
(or even not at all). The cell index is implicit when using the strict-binning approach, and thus
it avoids this problem for the particle data structure, while 64-bits integers can be computed
on-the-fly to avoid this problem when accessing grid quantities.

As a remark, we note that we chose here to keep doubles for the representation of velocities.
It makes sense because at each time step, we update the particle positions with #„x += #„v ∆t. With
a high number of time steps, using only floats for velocities could accumulate too much error.
There is a way to avoid the accumulation of errors known as Kahan’s summation formula [155],
but using it would require to store another float per particle (to account for the compensation
in the running sum), and thus it is simpler to just use plain doubles for velocities.

2.2.2 E and ρ Data Structure

“ Redundant interpolation coefficients are stored. [...] Fields can be interpolated
by accessing the cell’s interpolator instead of jumping around 6 different arrays and
across y- and z- strides within those arrays.

K. J. Bowers [45] ”The standard 3d representation of the electric field E and of the charge density ρ stores their
values at the grid points, see Listing 2.3 (top).

In this case, the interpolation of the 3d arrays Ex, Ey and Ez asks for accessing memory loca-
tions that are not contiguous. A solution to partially overcome this problem consists in storing
components of the field in only one array [54, Section IV, Case 3], see Listing 2.3 (middle).

Unfortunately, this data structure still leads to non-contiguous accesses. This problem is
solved by using a redundant one-dimensional array of coefficients [45]4, see Listing 2.3 (bot-
tom).

The redundant array E_1d stores, for each cell, the values of each of the three field arrays at
the grid points on the 8 corners of the cell, contiguously in memory. rho_1d similarly stores,

3unsigned int is less efficient: https://software.intel.com/en-us/articles/common-vectorization-tips
4This data structure is also detailed in later presentations, e.g., [44, Time 27’33”].

https://software.intel.com/en-us/articles/common-vectorization-tips
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1 // 3d arrays.

2 double Ex[ncx ][ ncy][ ncz], Ey[ncx][ ncy][ ncz], Ez[ncx][ ncy ][ncz ];

3 double rho[ncx ][ ncy][ ncz ];

4
5 // One 3d array.

6 double Exyz[ncx][ ncy][ ncz ][3];

7
8 // Redundant 1d arrays.

9 double E_1d[ncx*ncy*ncz ][24];

10 double rho_1d[ncx*ncy*ncz ][8];

Listing 2.3 – Data structures for E and ρ.

for each cell, the values of the charge density on the corners of that cell. In our implementation,
we use the formulas (2.3).

∀(ix, iy, iz) ∈ {0, . . . , ncx− 1} × {0, . . . , ncy− 1} × {0, . . . , ncz− 1},

ρ1d[icell(ix, iy, iz)][0] = ρ[ ix ][ iy ][ iz ]
ρ1d[icell(ix, iy, iz)][1] = ρ[ ix ][ iy ][mod(iz + 1, ncz)]
ρ1d[icell(ix, iy, iz)][2] = ρ[ ix ][mod(iy + 1, ncy)][ iz ]
ρ1d[icell(ix, iy, iz)][3] = ρ[ ix ][mod(iy + 1, ncy)][mod(iz + 1, ncz)]
ρ1d[icell(ix, iy, iz)][4] = ρ[mod(ix + 1, ncx)][ iy ][ iz ]
ρ1d[icell(ix, iy, iz)][5] = ρ[mod(ix + 1, ncx)][ iy ][mod(iz + 1, ncz)]
ρ1d[icell(ix, iy, iz)][6] = ρ[mod(ix + 1, ncx)][mod(iy + 1, ncy)][ iz ]
ρ1d[icell(ix, iy, iz)][7] = ρ[mod(ix + 1, ncx)][mod(iy + 1, ncy)][mod(iz + 1, ncz)]

(2.3)

They take eight times more memory than the standard layout, but it has been shown that,
for the charge density, it is more efficient because it opens the possibility to vectorize the ac-
cumulation step (line 11 in Figure 2.2)[87, Section 4.1.2]. Differences for this step between
standard and redundant arrays are shown for a 2d implementation in Listing 2.4.

We can note that this redundant data structure for E is a good choice only if there are a
lot of particles per cell. Of course, when there are roughly as many particles as grid points,
multiplying by 8 the data for E almost doubles the memory transfers. With such a low number
of particles, using a redundant data structure for E is detrimental.

In this thesis, we focus on simulations needing a lot of particles per cell. This data structure
is hence useful in our case. We will show in Sections 4.3.3 and 4.5.2 how to gain performance
through cache hit improvements, both for E and ρ, by using space-filling curves to order the
cells of this data structure.

2.3 Particle Initialization

In PIC implementations, it is common to initialize the particle positions and velocities ran-
domly following f0, each with weight w = 1

N

∫
f0 d #„x d #„v 5. There are some technical details

hidden behind the word “randomly”, that we will try to explain in this section.

• How to generate “good” uniform random numbers?

• How to deal with non-uniform numbers?

• Are we obliged to use randomness?

5The initial distribution functions considered have the same value
∫

f0 d #„x d #„v = (xmax − xmin) · (ymax − ymin) ·
(zmax − zmin).
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1 double rho[ncx ][ ncy]; // Standard 2d.

2 [...]

3 rho[i_x ][ i_y ] += w * (1. - dx[i]) * (1. - dy[i]);

4 rho[i_x ][ i_y + 1] += w * (1. - dx[i]) * ( dy[i]);

5 rho[i_x + 1][ i_y ] += w * ( dx[i]) * (1. - dy[i]);

6 rho[i_x + 1][ i_y + 1] += w * ( dx[i]) * ( dy[i]);

7
8 // VEC_ALIGN is architecture dependent , e.g., 32 with 256- bits vectors (AVX2 ).

9 // _Alignas (VEC_ALIGN ) (c11) can be safely replaced with __attribute__ (( aligned (

VEC_ALIGN ))) (gcc 2.95.3).

10 #define NB_CORNERS_2D 4

11 _Alignas ( VEC_ALIGN ) double rho_1d[ncx * ncy ][ NB_CORNERS_2D ]; // Redundant .

Remark: padding is needed for vector sizes wider than 256- bits ; use instead

rho_1d[ncx * ncy][ max(NB_CORNERS_2D , VEC_ALIGN / sizeof(double))].

12 _Alignas ( VEC_ALIGN ) float coeffs_x [NB_CORNERS_2D ] = { 1., 1., 0., 0.};

13 _Alignas ( VEC_ALIGN ) float signs_x [NB_CORNERS_2D ] = { -1., -1., 1., 1.};

14 _Alignas ( VEC_ALIGN ) float coeffs_y [NB_CORNERS_2D ] = { 1., 0., 1., 0.};

15 _Alignas ( VEC_ALIGN ) float signs_y [NB_CORNERS_2D ] = { -1., 1., -1., 1.};

16 [...]

17 #pragma omp simd aligned(coeffs_x , coeffs_y , signs_x , signs_y :VEC_ALIGN )

18 for (corner = 0; corner < NB_CORNERS_2D ; corner ++)

19 rho_1d[i_cell[i]][ corner] += w *

20 (coeffs_x [corner] + signs_x[corner] * dx[i]) *

21 (coeffs_y [corner] + signs_y[corner] * dy[i]);

Listing 2.4 – Accumulation in 2d: Standard VS Redundant (not thread-safe).

2.3.1 “Good” Random Uniform Numbers

“ An argument based on spatial statistics [32, p. 26] suggests that we need N ≫
200 n2 if there are n iid points in the problem.

B. D. Ripley [117] ”It is really important to pick a “good” pseudo-random number generator (PRNG) in Monte-
Carlo simulations. Here are some examples of random number generators used in PIC imple-
mentations:

• The textbook ES1 implementation [5, Section 3.6] uses a quiet start (cf. Section 2.3.3), or a
pseudo-random initialization with Fortran’s native ranf function together with scram-
bling; a more recent implementation [6] uses the “Minimal standard” generator [116].

• The VM_non_unif implementation [3] uses a “KISS” generator [113, Combination Gener-
ators][111, 118], and also a quiet start (cf. Section 2.3.3).

• The PIConGPU implementation [49] uses the CURAND library6 from NVIDIA with the
XORWOW generator [112], and also a quiet start (cf. Section 2.3.3).

• The SeLaLib [51] and PICSAR [87] implementations use Fortran’s native random_number

(the GNU version7 is the Xorshift1024* generator [112]).

• The GTC-P implementation [83] uses the “MRG32k3a” generator [109, 110].

• The VPIC [46] and SMILEI [56] implementations use the “Mersenne Twister” genera-
tor [114].

6https://developer.download.nvidia.com/compute/DevZone/docs/html/CUDALibraries/doc/CURAND_Lib

rary.pdf
7https://gcc.gnu.org/onlinedocs/gfortran/RANDOM_005fNUMBER.html

https://developer.download.nvidia.com/compute/DevZone/docs/html/CUDALibraries/doc/CURAND_Library.pdf
https://developer.download.nvidia.com/compute/DevZone/docs/html/CUDALibraries/doc/CURAND_Library.pdf
https://gcc.gnu.org/onlinedocs/gfortran/RANDOM_005fNUMBER.html
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1 double random_double (void ) {

2 return (( double)random_integer ()) / (( double)MAX_RAND_INT_VALUE + 1.);

3 }

Listing 2.5 – First attempt to convert an integer to a double: not all possible values are
generated.

We should have the period p of our generator be much greater than 200 n2 [117], where n
is the number of random numbers generated. For a PIC simulation involving e.g., 1 trillion
particles, where each particle needs at least 6 but usually more random numbers, it means that
we first need p≫ 200 · 1024. This is why we can already discard:

• the Intel version of Fortran’s native random_number8 which uses two separate congruen-
tial generators together [108, 8] (p ≈ 1018)

• the Microsoft 15-bits version of C’s native rand generator (p ≈ 104) and 32-bits versions
of it (p ≈ 109)

• C’s native random generator (p ≈ 1010)

• POSIX’s native generator drand48 (p ≈ 1013)

We can note that choosing a good pseudo-random number generator is easiest in C++ than
in C or Fortran, since good ones are included in the standard library <random> from the C++11

version9.
As a side note, we have to be careful if we want to produce doubles from a pseudo-random

number generator that gives only integer values. One obvious-but-wrong way to do it is shown
in Listing 2.5. This code does generate doubles in [0; 1), but if the generator outputs integers
with less than 53 bits, it is not enough to generate all possible double values. In [106], a conver-
sion function is shown with MAX_RAND_INT_VALUE = 232 − 1. Listing 2.6 shows how to enable it
for other MAX_RAND_INT_VALUE values. It assumes that MAX_RAND_INT_VALUE ≥ 215 − 1, but can
be extended in a similar fashion if this is not the case (although this is unlikely to happen).

A detailed discussion of the desired properties required by a pseudo-random number gen-
erator can be found in [106]. Following the pieces of advice given in this article, we wrote the
seed generator shown in Listing 2.7.

We now show how using different pseudo-random number generators affect a PIC simula-
tion:

• C’s native generator rand, although it is well known that it should be avoided [107].

• C’s native generator drand48.

• The “KISS” [113, Combination Generators][111, 118] (Keep It Simple Stupid). We took the
code from [106] (p ≈ 2127) which is a slight modification of the one given in the second
citation.

• The “Mersenne Twister” [114] with p = 219 937 − 1. We linked our code with the GNU
Scientific Library10, but we could also have taken the code on its authors’ webpage11.

• The “WELL” [115] (Well Equidistributed Long-period Linear) with different periods avail-
able from 2512 − 1 to 244 497 − 1. We took the code from its authors’ webpage12.

8https://software.intel.com/en-us/node/693738
9http://en.cppreference.com/w/cpp/numeric/random

10https://www.gnu.org/software/gsl/manual/html_node/Random-Number-Generation.html
11http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
12http://www.iro.umontreal.ca/~panneton/WELLRNG.html

https://software.intel.com/en-us/node/693738
http://en.cppreference.com/w/cpp/numeric/random
https://www.gnu.org/software/gsl/manual/html_node/Random-Number-Generation.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
http://www.iro.umontreal.ca/~panneton/WELLRNG.html
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1 #define MASK_53_BITS 9007199254740991

2 #define TWO_POWER_53 9007199254740992.0

3 #define TWO_POWER_27 134217728.0

4 #define TWO_POWER_18 262144.0

5 /*

6 * Combines different random_integer () calls to provide a double number with

7 * all 53 random bits .

8 *

9 * N.B.: For performance issues , one could move the ifs at the exterior of the

10 * function and use preprocessor #ifs instead .

11 * N.B.: int64_t (stdint.h) can be safely replaced by unsigned long long (c99).

12 */

13 double random_double (void ) {

14 int64_t max_plus_1 = (int64_t )MAX_RAND_INT_VALUE + 1;

15 if ( MAX_RAND_INT_VALUE < TWO_POWER_18 )

16 return (double)((

17 (int64_t) random_integer () +

18 (( int64_t) random_integer () * max_plus_1 ) +

19 (( int64_t) random_integer () * max_plus_1 * max_plus_1 ) +

20 (( int64_t) random_integer () * max_plus_1 * max_plus_1 *

max_plus_1 )

21 ) & MASK_53_BITS ) / TWO_POWER_53 ;

22 else if (MAX_RAND_INT_VALUE < TWO_POWER_27 )

23 return (double)((

24 (int64_t) random_integer () +

25 (( int64_t) random_integer () * max_plus_1 ) +

26 (( int64_t) random_integer () * max_plus_1 * max_plus_1 )

27 ) & MASK_53_BITS ) / TWO_POWER_53 ;

28 else if (MAX_RAND_INT_VALUE < TWO_POWER_53 )

29 return (double)((

30 (int64_t) random_integer () +

31 (( int64_t) random_integer () * max_plus_1 )

32 ) & MASK_53_BITS ) / TWO_POWER_53 ;

33 else

34 return (double)((

35 (int64_t) random_integer ()

36 ) & MASK_53_BITS ) / TWO_POWER_53 ;

37 }

Listing 2.6 – Second attempt to convert an integer to a double: all 53 random bits.
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1 /*

2 * Hash function [10, Section 11] from http://burtleburtle.net/bob/hash/doobs.html

3 * N.B.: int32_t (stdint.h) can be safely replaced by unsigned long (c99).

4 */

5 inline int32_t mix(int32_t a, int32_t b, int32_t c) {

6 a=a-b; a=a-c; a=a^(c >> 13);

7 b=b-c; b=b-a; b=b^(a << 8);

8 c=c-a; c=c-b; c=c^(b >> 13);

9 a=a-b; a=a-c; a=a^(c >> 12);

10 b=b-c; b=b-a; b=b^(a << 16);

11 c=c-a; c=c-b; c=c^(b >> 5);

12 a=a-b; a=a-c; a=a^(c >> 3);

13 b=b-c; b=b-a; b=b^(a << 10);

14 c=c-a; c=c-b; c=c^(b >> 15);

15 return c;

16 }

17
18 /*

19 * Returns a 64-bit seed from time , process ID and host ID.

20 * Also uses mpi_rank for the probable case where different MPI processes

21 * are launched on the same machine.

22 * One could alternatively use bits from /dev/(u)random

23 * N.B.: int32_t (stdint.h) can be safely replaced by unsigned long (c99).

24 * N.B.: int64_t (stdint.h) can be safely replaced by unsigned long long (c99).

25 */

26 inline int64_t seed_64bits (int mpi_rank ) {

27 struct timeval tv;

28 gettimeofday (&tv , (void *)0);

29 int32_t time_value1 = (int32_t )tv.tv_sec;

30 int32_t time_value2 = (int32_t )tv.tv_usec ;

31 int32_t process_id = (int32_t )getpid ();

32 int32_t host_id = (int32_t )gethostid () + (int32_t)mpi_rank ;

33 int64_t low_32bits = (int64_t )mix(time_value1 , process_id , host_id);

34 int64_t high_32bits = (int64_t )mix(time_value2 , process_id , host_id);

35 return low_32bits | ( high_32bits << 32);

36 }

Listing 2.7 – 64-bits seed generator.
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Figure 2.4 – Landau damping simulation with different generators. 1 billion particles, grid size:
256× 256, ∆t: 0.05, perturbation: 0.01.

http://burtleburtle.net/bob/hash/doobs.html
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Figure 2.4 shows a diagnostic for a simulation: we plot 0.5 · log(
∫
(E2

x + E2
y)dx dy), closely

related to the electric energy 1
2

∫
(E2

x + E2
y)dx dy). This computation is not the main goal of our

simulations, but is here used to verify our implementation: on this particular test case, we have
an almost-exact theoretical solution thanks to a dispersion analysis [35, Chapter 4], see details
in Section 7.1. The fact that none of the simulated curves agree with the theoretical one at the
beginning is normal: at the beginning, we need more than just the first time mode to explain
the behavior. The fact that they also differ from this curve at the end is also expected: this
is numerical noise caused by a “low” number of particles. This figure illustrates two things.
First, one should not use rand(). On the target architecture, rand() outputs 32 bits integers
with p ≈ 109, and you can see that using Listing 2.5 yields incorrect results from the start. Even
if combining two rand() calls (see Listing 2.6) yields “better” results, it is still far from what is
attained by other generators. Second, when using a generator that outputs integers to produce
doubles, we should pay attention to combine different calls to the generator if the integers have
less than 53 bits. When using rand(), we had two problems: the low period and this one. With
the KISS generator, there is no period problem, but this one remains. A zoom on this figure, see
Figure 2.5, clearly demonstrates the superior effect of combining two KISS calls.

Suppose now that the only random number generator used in our implementation is the
one given in Listing 2.5. We output diagnostics, see the top curve “rand (bad usage)”, and we
might think that there is a problem in the initialization. However, when looking at the dis-
tribution function with such a high number of grid points, it is hard to detect anything (see
Figure 2.6, top left). To be able to see something, let us look at the distribution function on a
coarser 32× 32 grid (see Figure 2.6, top right). Now we clearly see that the initial distribution
function has not been correctly sampled. Of course, the function looks correctly sampled when
using e.g., the WELL generator, see Figure 2.6 (bottom right). . . but it also looks correctly sam-
pled when using a combination of two rand() calls, see Figure 2.6 (bottom left), even though
we have seen in Figure 2.4 that this method does not give satisfactory results. So, looking with
our eyes at the initial repartition of the particles is not enough to judge the quality of a ran-
dom number generator. It would be interesting to know if it is possible to use a tool to detect
anomalies.

Figure 2.7 shows that the bad behavior of rand() is even worse when using much more
particles, as expected. It also shows that, even though it is regarded as a bad generator in [106],



42 CHAPTER 2. PRELIMINARIES TO THE PARTICLE-IN-CELL METHODS

 0
 2

 4
 6

 8
 10

 12  0
 2

 4
 6

 8
 10

 12

 7100
 7200
 7300
 7400
 7500
 7600
 7700
 7800
 7900
 8000
 8100

Nb particles

Number of particles - rand (bad usage)
1 + alpha * cos(kx * x) * cos(ky * y)

X

Y

Nb particles

 0
 2

 4
 6

 8
 10

 12  0
 2

 4
 6

 8
 10

 12

 475000

 480000

 485000

 490000

 495000

 500000

Nb particles

Number of particles - rand (bad usage)
1 + alpha * cos(kx * x) * cos(ky * y)

X

Y

Nb particles

 0
 2

 4
 6

 8
 10

 12  0
 2

 4
 6

 8
 10

 12

 480000
 482000
 484000
 486000
 488000
 490000
 492000
 494000
 496000

Nb particles

Number of particles - rand (combination)
1 + alpha * cos(kx * x) * cos(ky * y)

X

Y

Nb particles

 0
 2

 4
 6

 8
 10

 12  0
 2

 4
 6

 8
 10

 12

 480000
 482000
 484000
 486000
 488000
 490000
 492000
 494000
 496000

Nb particles

Number of particles - WELL
1 + alpha * cos(kx * x) * cos(ky * y)

X

Y

Nb particles

Figure 2.6 – Sampling 500 million particles following (1 + 0.01 · cos(x/2) · cos(y/2)).
Top left: 32-bits rand(), 256× 256 grid. Top right: 32-bits rand(), 32× 32 grid.
Bottom left: two 32-bits rand() combined, 32× 32 grid. Bottom right: WELL, 32× 32 grid.
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Figure 2.7 – Landau damping simulation with different generators. 100 billion particles, grid
size: 256× 256, ∆t: 0.05, perturbation: 0.01.

“RFC 1149.5 specifies 4 as the standard IEEE-

vetted random number.”

Credits — left strip: Randall Munroe, https://xkcd.com/221/; right strip: Scott Adams and
the Andrews McMeel Syndication, http://dilbert.com/strip/2001-10-25.

Figure 2.8 – xkcd’s RNG (left) and Dilbert’s one (right).

drand48() leads to results close to the other generators on this particular test case.
There are of course a lot of other random number generators, see e.g., [16, Section 8.3].

Among them, Dilbert’s and xkcd’s random number generators seemed promising, see Fig-
ure 2.8, but they turned out to be unsatisfactory.

2.3.2 Non-Uniform Random Numbers

“ Occasionally, a research paper will contend that the quality of the random
numbers generated by some particular method, such as Box–Muller or the ratio-
of-uniforms, is bad, but the quality ultimately depends only on the quality of the
underlying uniform generator.

J. E. Gentle [16, Section 4] ”The uniform law has been studied in the previous subsection. We will here suppose that we
have a generator for this law, and use it to generate other ones. Different methods for achieving
this aim are described in [16, Section 4]. We will here only sketch the methods that were used
in Pic-Vert.

If we are in a 1d setting, one option is to reverse the cumulative density function. See for
example the Applied Statistics Algorithm 241 [120] if we need the normal distribution. It is

https://xkcd.com/221/
http://dilbert.com/strip/2001-10-25
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> f:=(x,y)->x**2 * exp(-(x**2 + y**2) / 2) / (2 * Pi); |\^/|

> solve({diff(f(x,y),x)=0, diff(f(x,y),y)=0}, {x, y}); ._|\| |/|_.

{x = 0, y = y}, {x = RootOf(_Z**2 - 2), y = 0} \ MAPLE /

> evalf(f(0, y)); <____ ____>

0. |

> evalf(f(sqrt(2), 0));

0.1170996630

> evalf(f(-sqrt(2), 0));

0.1170996630

Figure 2.9 – Maximum search with Maple.

1 void polynomial_times_maxwellian_2d(double* vx , double* vy) {

2 double control_point , evaluated_point ;

3 do {

4 *vx = 12. * pic_vert_next_random_double() - 6.0; // Uniform in [-6 ; 6)

5 *vy = 12. * pic_vert_next_random_double() - 6.0; // Uniform in [-6 ; 6)

6 control_point = 0.1171 * pic_vert_next_random_double();

7 evaluated_point = sqr (*vx) * exp(-(sqr (*vx) + sqr (*vy)) / 2.) / (2. * PI

);

8 } while (control_point > evaluated_point );

9 }

Listing 2.8 – Acceptance / rejection algorithm for f (x, y) = x2 · 1
2 π

exp
(

− x2 + y2

2

)

.

not always possible to give a formula for the reverse cumulative density function. However,
it is always possible to numerically reverse it, e.g., with a binary search [10, Exercises 2.3-5].
In any dimension, if we have to generate the normal distribution, we can use the Box–Muller
algorithm instead [104].

In the general case we can always use the acceptance / reject method [16, Section 4.5]. This
is the most used method in our implementation. This method requires that we can provide an
upper bound of the function. Whenever we had a new function to generate with this method,
we thus had to search for global maximums, which is quite easy with a formal calculus tool.
First, we have to search for critical points, then look if the maximum of f lies on a critical
point or on the boundaries of its definition. Figure 2.9 shows how to use Maple [188] to find

the maximum of the 2d function f (x, y) = x2 · 1
2 π

exp
(

− x2 + y2

2

)

[207, Equation 5]. Here

we find the value ≈ 0.1170996630, which is a maximum value: we can look at the curve of f
to be sure, see Figure 2.10. The acceptance / rejection method for this function is then given
in Listing 2.8. As a side note, let us remark that this algorithm is not the most efficient to
generate this function. If we look at Figure 2.10, we feel that taking 0.1171 as a delimiter for f
on the whole domain leads to a poor acceptance rate: around 1/16.8624 ≈ 5.9% because the
integral of f over [−6; 6] × [−6; 6] is around 1 and the volume of the parallelepiped [−6; 6] ×
[−6; 6] × [0; 0.1171] is 16.8624. This solution has thus the advantage to be easy, but could be
fastened by using a better majoring function than the constant function 0.1171, see details in [16,
Section 4.5].
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Figure 2.10 – f (x, y) = x2 · 1
2 π

exp
(

− x2 + y2

2

)

plotted on [−6; 6]× [−6; 6].

2.3.3 Non-Random Initialization: “Quiet Start”

“ Nonrandom initializations [...] give quiet starts with low initial noise levels.
[...] The noise level grows and, as in other quiet-start methods, the simulation re-
mains quiet for a finite time only.

J. Denavit & J. M. Walsh [55] ”To generate particles, it is also possible to use quasi-random number generators. The main
idea is the following: when we want to simulate what happens with a really precise initial
condition (e.g., “activate” only a given set of Fourier modes), we cannot do it precisely with a
“truly” random initialization, unless we put a lot of particles [55]. The randomness will lead
to the activation of unwanted Fourier modes. Hence the need to have a “noiseless” particle
initialization [50]. Instead of using pseudo-random numbers, the idea is thus to use low dis-
crepancy sequences: sequences of numbers that are deterministic, and as uniform as possible.
They are called quasi-random numbers, even if they are not at all random. In some applica-
tions, it gets rid of the traditional stochastic convergence of Monte-Carlo methods in 1√

N
, and

replaces it with a better convergence in 1
N , although for a PIC method it applies only for the

initial distribution function. Examples of such sequences are the Hammersley sequence [20,
Section 3.3], the Sobol’ sequence [119], the van der Corput sequence [105]. . .

If using those sequences with “simple” initializations, i.e. that require one random num-
ber per position and one per velocity (e.g., uniform, the polar Box–Muller algorithm, the re-
verse cumulative density function algorithm. . . but not the acceptance / reject algorithm.), it is
straightforward to parallelize the use of these sequences. With P processes, the i-th process just
accesses the {i · N/P, . . . , (i + 1) · N/P − 1} indices. However, when using those sequences
in parallel together with an acceptance / rejection algorithm, one cannot know in advance the
number of indices needed to generate the N particles. Thus, special care has to be taken, in
order to avoid indices not accessed by any process or indices accessed by multiple processes.

2.4 Field Solve

The field solver is in charge of converting ρ to E with respect to the Poisson equation. The
complexity of this part is then related to nbCells = ncx · ncy · ncz.
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In our implementation, the electric field is computed by solving the Poisson equation on a
uniform Cartesian grid, by a Fourier method — using FFTW [149] together with OpenMP [182].
This algorithm performs O(nbCells · log nbCells) operations and has a huge asset: the first “F”
in FFT means “Fast”. For example, on a benchmark with a 64 × 64 × 64 grid and 1 billion
particles, the Poisson solve takes only 0.20% of the total execution time (or 3.5 ms per solve
with 24 cores). In 2d with a 512× 512 grid, we obtain roughly the same numbers. This gives a
good insight of how powerful this method is.

“ [The particle processing routines] times are negligible in comparison to the
Poisson solve time.

R. K. Narayanan & K. Madduri [74, Section 3.1] ”Other applications need bigger grid sizes or less particles, and the percentage of the Poisson
solve time will grow. In [74], the test case uses a few thousands particles on a 256× 256× 256
grid. In our test cases, we have different boundary conditions, but with this grid size, the
Poisson solve takes only 0.25 s per solve with 24 cores, and it is still low in comparison to
the particle processing routines. In this article, a timing of 4.4 s per solve is reported for 8
cores, with a different algorithm: a multi-grid solver, which performs O(nbCells) operations.
For comparison, those timings correspond to 5.9 s for 1 core with FFT and 35 s for 1 core with
their multi-grid solver. Of course, the number of iterations of the multi-grid solver explains
the higher execution time, and this number of iterations depends on the boundary conditions.
Still, in this paper they consider FFT as future research.

Compared to FFT, the multi-grid solver has a better asymptotic complexity, might be bet-
ter suited for parallelism using domain decomposition, and might be easier to modify when
changing the boundary conditions. It is thus interesting to keep in mind that, even though in
our applications the FFT was a good choice, in other scenarios another solver might be more
efficient.

“ We have primarily adopted the charge-conserving current deposition algo-
rithms because they allow the field solve to be done locally, i.e., there is no need for
a Poisson solve.

R. A. Fonseca, L. O. Silva, F. S. Tsung, V. K. Decyk, W. Lu, C. Ren, W. B. Mori,
S. Deng, S. Lee, T. Katsouleas, & J. C. Adam [58, Section 4] ”As stated in the introduction, the Poisson equation is a simplification of the Maxwell equa-

tions (1.4). Solving the Maxwell equations (a) needs other operations on the particles to deposit
the current in addition to deposit the charge, and (b) needs to account for the self-consistent
magnetic field (which is neglected when using the Poisson equation instead), but (c) allows to
solve the fields locally, hence allows to efficiently use domain decomposition. In this thesis, an-
other approach is taken to parallelize the computations: replicate the grid on each MPI process,
and distribute evenly the particles across them. This strategy is efficient in 2d or in 3d with
small grid sizes, but becomes too costly with bigger grid sizes due to MPI communication of the
full grid and due to the numerous cache misses if an MPI process may have particles anywhere
on the domain.

2.5 Interaction Between Particles and Fields: Interpolation

There are two points in the algorithm where the particles interact with the grid quantities: when
computing the electric field at the particles’ positions, and when computing the charge density
from the particles (lines 8 and 11 in Figure 2.2). Different schemes exist that are of arbitrary
order. The most common ones are [23, Section 5-3]:
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v+ =
q

m
E∆t

dx

dy

for (i = 0; i < N; i++) {
vx[i] += q / m * delta_t * (

( dx[i])*( dy[i])*E[i_cell[i]].x_ne
+ (1.-dx[i])*( dy[i])*E[i_cell[i]].x_nw
+ ( dx[i])*(1.-dy[i])*E[i_cell[i]].x_se
+ (1.-dx[i])*(1.-dy[i])*E[i_cell[i]].x_sw);

vy[i] += q / m * delta_t * (
( dx[i])*( dy[i])*E[i_cell[i]].y_ne

+ (1.-dx[i])*( dy[i])*E[i_cell[i]].y_nw
+ ( dx[i])*(1.-dy[i])*E[i_cell[i]].y_se
+ (1.-dx[i])*(1.-dy[i])*E[i_cell[i]].y_sw);

}

Figure 2.11 – First order interpolation in 2d with the redundant data structure.

• the nearest grid point (NGP), or first-order B-spline (degree 0 in space).
• the cloud-in-cell (CIC) model, or second-order B-spline, or linear splines (degree 1 in

space).
• the triangular-shaped-cloud (TSC), or third-order B-spline, or quadratic splines (degree 2

in space).
• the quadratic-spline interpolation scheme (PQS), or fourth-order B-spline, or cubic splines

(degree 3 in space).

Schemes of degree up to 5 in space are presented in [80, Table 4]. Increasing the degree
of interpolation also increases the execution time. This increase is studied for example in 1d
in [80, Figure 19] and in 3d in [57, Table 3].

If the degree of a scheme is k, then it uses (k + 1)d points, where d is the number of di-
mensions of the physical space. For example, the cloud-in-cell model [42] that we will apply
throughout this thesis uses 4 points in 2d, and 8 points in 3d.

The code for the accumulation step in 2d using the cloud-in-cell model was shown in List-
ing 2.4. Using the same model, Figure 2.11 shows the code for the interpolation step in 2d and
Listing 2.9 shows the code for the accumulation step in 3d. In a number of physical applica-
tions, this model is not considered as sufficiently precise. Thus, a model of degree 2 or 3 is often
used in practice.

2.6 Process-level Parallelism

Let us now focus on different ways to parallelize a PIC implementation across machines from
a supercomputer (distributed memory, with MPI [184]).

When the grid over which the simulation takes place is very large, the cost of maintaining
a copy of the entire grid on every machine is prohibitive. In such situations, one resorts to
domain decomposition, thereby assigning the available machines to subdomains of the grid space.
A first challenge in domain decomposition is to balance the load: find subdomains that bear
approximatively the same number of particles. Possible solutions involve:

• space-filling curves [2], e.g., PSC [59],
• Barnes–Hut trees (also called octrees) or their generalization spacetrees, e.g., [134, 181,

89],
• rectilinear partitioning [167] (i.e., using parallelepipeds), e.g., PICADOR [82],
• having processes with less particles help the ones with more particles, e.g., EMSES [73].

A second challenge is associated with the significant amount of communication involved
for redistributing the particles that move across the subdomain boundaries. A typical plasma
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1 // VEC_ALIGN is architecture dependent , e.g., 32 with 256- bits vectors (AVX2 ).

2 // _Alignas (VEC_ALIGN ) (c11) can be safely replaced with __attribute__ (( aligned (

VEC_ALIGN ))) (gcc 2.95.3).

3 #define NB_CORNERS_3D 8

4 _Alignas ( VEC_ALIGN ) double rho_1d[ncx * ncy * ncz][ NB_CORNERS_3D ]; // Redundant .

Remark: padding is needed for vector sizes wider than 512- bits ; use instead

rho_1d[ncx * ncy * ncz][ max(NB_CORNERS_3D , VEC_ALIGN / sizeof(double))].

5 _Alignas ( VEC_ALIGN ) float coeffs_x [NB_CORNERS_3D ] =

6 { 1., 1., 1., 1., 0., 0., 0., 0.};

7 _Alignas ( VEC_ALIGN ) float signs_x [NB_CORNERS_3D ] =

8 { -1., -1., -1., -1., 1., 1., 1., 1.};

9 _Alignas ( VEC_ALIGN ) float coeffs_y [NB_CORNERS_3D ] =

10 { 1., 1., 0., 0., 1., 1., 0., 0.};

11 _Alignas ( VEC_ALIGN ) float signs_y [NB_CORNERS_3D ] =

12 { -1., -1., 1., 1., -1., -1., 1., 1.};

13 _Alignas ( VEC_ALIGN ) float coeffs_z [NB_CORNERS_3D ] =

14 { 1., 0., 1., 0., 1., 0., 1., 0.};

15 _Alignas ( VEC_ALIGN ) float signs_z [NB_CORNERS_3D ] =

16 { -1., 1., -1., 1., -1., 1., -1., 1.};

17 [...]

18 #pragma omp simd aligned(coeffs_x , coeffs_y , coeffs_z , signs_x , signs_y , signs_z

:VEC_ALIGN )

19 for (corner = 0; corner < NB_CORNERS_3D ; corner ++)

20 rho_1d[i_cell[i]][ corner] += w *

21 (coeffs_x [corner] + signs_x[corner] * dx[i]) *

22 (coeffs_y [corner] + signs_y[corner] * dy[i]) *

23 (coeffs_z [corner] + signs_z[corner] * dz[i]);

Listing 2.9 – Accumulation in 3d: Redundant (not thread-safe).

simulation may involve a significant fraction of fast-moving particles that frequently cross sub-
domains boundaries, thus requiring heavy cross-machine communication. A possible solution
is to overlap as much communication with computation as possible, e.g., [48, p. 2835].

When the grid is not too large, particle decomposition may be used: particles are distributed
evenly to the machines, each of which replicates the description of the electric field. The ma-
chines synchronize at every time step, by communicating the contribution of their particles to
the charge density, in order to update the electric field. In that approach, the communication
time is small if the shared domain itself is small, even though there is a logarithmic reduction
step for synchronization.

A successful hybrid approach, known as domain cloning [64, 79], consists of using domain
decomposition in order to create subdomains that are just small enough for particle decompo-
sition to apply.

In this work, we handle the process-level parallelism with particle decomposition. The
main advantages of this method are:

• its simplicity: everything is automatically work-balanced, because every MPI process
keeps all its particles during the whole simulation;

• the only communication is via MPI_ALLREDUCE for the reduction of the charge array: no
particle has to move from one process to another during the simulation;

• the scaling is automatically independent of the particle distribution and thus of the par-
ticle dynamics: the performance of the parallelism should be problem independent.

The bottleneck of this approach is that the scalability is highly limited by the global reduc-
tion step. Thus, two parameters should not be very large, otherwise they could severely slow
down the simulation: the number of cells and the number of processes.
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2.7 Some Particle-in-Cell Implementations

There are approximatively as many PIC implementations as there are research teams that use
the PIC method. It would be practically unfeasible to list them all. Here are just a few imple-
mentations that we encountered during this thesis.

• EMSES (ElectroMagnetic Spacecraft Environment Simulator). Implementation introduced
in 2009 ([71]; recent work: [72]

• ES1 (ElectroStatic 1 dimensional). Implementation introduced in 1985 ([5]); recent work: [6];
code repository: https://www.crcpress.com/downloads/IP586/DISKFILES.zip

• EUTERPE13. Implementation introduced in 1998 ([63]); recent work: [33]; website: http:
//montblanc-test.bsc.es/applications/euterpe

• GTC (Gyrokinetic Toroidal Code) / GTC-P (Princeton Gyrokinetic Toroidal Code). Im-
plementation introduced in 1998 ([69]); recent work: [83]; website: http://www.nersc.go
v/research-and-development/apex/apex-benchmarks/gtc-p/

• KEMPO (Kyoto university’s ElectroMagnetic Particle cOde). Implementation introduced
in 1985 ([27]); recent work: [30]; code repository: https://www.terrapub.co.jp/e-libra
ry/cspp/text/09.txt (Fortran), https://web.archive.org/web/20141022230251/http
://www.rish.kyoto-u.ac.jp/isss7/KEMPO/14 (matlab)

• ORB515. Implementation introduced in 1998 ([84]); recent work: [62]; website: https://s
pc.epfl.ch/ORB5

• OSIRIS (Object-oriented SImulation Rapid Implementation System). Implementation in-
troduced in 2000 ([22]); recent work: [57]; website: https://picksc.idre.ucla.edu/sof
tware/software-production-codes/osiris/

• PICSAR (Particle-In-Cell Scalable Application Resource). Implementation introduced in
2016 ([87]); website: https://picsar.net/

• PICADOR16. Implementation introduced in 2011 ([40]); recent work: [81]; website: http:
//hpc-education.unn.ru/en/research/overview/laser-plasma

• PIConGPU (Particle-in-Cell on Graphics Processing Units). Implementation introduced
in 2010 ([48]); recent work: [90]; website: http://picongpu.hzdr.de/

• PSC (Plasma Simulation Code). Implementation introduced in 2006 ([7, Chapter 2]); re-
cent work: [59]; website: http://www.plasma-simulation-code.net/

• QuickPIC (QUasi-statIC Particle-in-Cell). Implementation introduced in 2006 ([60]); re-
cent work: [37]; website: https://picksc.idre.ucla.edu/software/software-product
ion-codes/quickpic/

• SHARP (A Spatially Higher-order, Relativistic Particle-in-cell code). Implementation in-
troduced in 2017 ([80])

13Not an acronym. In Greek mythology, Euterpe was one of the Muses: https://en.wikipedia.org/wiki/Eute
rpe.

14Archived from the original http://www.rish.kyoto-u.ac.jp/isss7/KEMPO/.
15Not an acronym.
16Not an acronym. A picador is a horseman in Spanish bullfights: https://en.wikipedia.org/wiki/Picador.

It is also a ketchup brand: http://en.unitedfoodgroup.ru/brands/ketchup-picador/.

https://www.crcpress.com/downloads/IP586/DISKFILES.zip
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https://web.archive.org/web/20141022230251/http://www.rish.kyoto-u.ac.jp/isss7/KEMPO/
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• SMILEI (Simulating Matter Irradiated by Light at Extreme Intensities). Implementation
introduced in 2016 ([66]); recent work: [56]; website: http://www.maisondelasimulatio
n.fr/projects/Smilei/html/index.html

• TRISTAN (TRIdimensional STANford code) / par-T (PARallel Tristan) / Apar-T17. Im-
plementation introduced in 1993 ([9]); recent work: [29]; code repository: https://www.t
errapub.co.jp/e-library/cspp/text/10.txt

• VORPAL18. Implementation introduced in 2001 ([75]); website: https://www.txcorp.co
m/vsim

• VPIC (Vector Particle-in-Cell). Implementation introduced in 2003 ([45]); recent work: [46];
code repository: https://github.com/lanl/vpic

• XOOPIC (X11-based Object-Oriented Particle-in-Cell). Implementation introduced in 1995
([86]); recent work: [38]; website: https://ptsg.egr.msu.edu/

17Not an acronym. Aparté is a French word.
18Not an acronym. Vorpal is a nonsense word from the 1872 poem "Jabberwocky" by Lewis Carroll [194, Chap-

ter 1].

http://www.maisondelasimulation.fr/projects/Smilei/html/index.html
http://www.maisondelasimulation.fr/projects/Smilei/html/index.html
https://www.terrapub.co.jp/e-library/cspp/text/10.txt
https://www.terrapub.co.jp/e-library/cspp/text/10.txt
https://www.txcorp.com/vsim
https://www.txcorp.com/vsim
https://github.com/lanl/vpic
https://ptsg.egr.msu.edu/
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Chapter 3

Contributions

The main contribution of our thesis is a software written in C, called Pic-Vert: it is an imple-
mentation of the Particle-in-Cell (PIC) method for plasma physics. Three important steps are
required for such an implementation:

• (computer science) it should be efficient. PIC implementations are usually memory bound,
as a recent paper [83] points out: “metrics such as flop/s or percentage-of-peak are less relevant
for the predominantly memory-bound gyrokinetic PIC methods, as modern architectures require
10 flops per byte moved from DRAM in order to be compute-limited.”. It is possible to verify
this assertion in the roofline model [180]. Memory bandwidth usage should hence be a
good metric to ensure efficiency of one’s implementation.

• (mathematics) it should be verified. Some test cases have almost-exact theoretical solu-
tions. One should verify that the implementation outputs the desired solution. For other
test cases, some other diagnostics may be performed to assess correctness of the results,
like the conservation of total energy.

• (physics) it should be validated. The physical model used in a given implementation
always have some limitations. One should validate the model chosen with real-life sim-
ulations.

For performance, we provide an implementation that (a) achieves close-to-minimal num-
ber of memory transfers with the main memory, (b) exploits SIMD instructions for numeri-
cal computations and (c) exhibits a high degree of OpenMP-level parallelism. Throughout this
manuscript, we show the memory bandwidth usage of our implementation, in the roofline
model [180]. We also implemented distributed-memory parallelism through particle decom-
position, even though for future work, domain decomposition is a better approach. This last
layer of parallelism is thus not the core of our work. To put our work in perspective, we also
designed a new metric to compare the efficiency of PIC implementations when using different
multi-core architectures. Pic-Vert is compared to other recent implementations in Section 3.3.

For verification, we simulate classical 2d2v and 3d3v Landau-damping test cases [4, 23]. We
also simulate a new test case that was designed by our co-authors [207]. It is possible to test the
correctness of these simulations by comparing the simulated electric energy to its theoretical
value obtained from the dispersion analysis.

For validation, we simulate a 2d3v electron hole test case [165]. We are able to reproduce
the results of this paper, which are validated by satellite measurements of phase-space holes in
various parts of the magnetosphere.

3.1 Organization of the Chapters Describing Our Contributions

Chapters 4–8 describe the main contributions of our thesis.
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X X X X X

7 9 6 8

Figure 3.1 – Chunk bag data structure: chunks of size 10, particles stored in grey cells.

Chapters 4 and 5 first present the main features of Pic-Vert. Both chapters are written with
the intent of providing the intuition behind the optimizations performed. Our goal would be
accomplished if, when reading these chapters, the ideas seem easy and natural. The imple-
mentation itself is also described, and this sometimes leads to technical details which need
more time to be understood. All in all, we tried to follow this piece of advice:

“ Everything should be made as simple as possible, but not simpler.

A. Einstein ”Chapter 4 focuses on the optimization of a relatively standard algorithm, where we use
AoS or SoA for the data layout of the particle array, with a periodic sorting of this array. Some
optimizations presented in this chapter are quite classical — even though not always found in
the PIC community — and some other ones are, to the best of our knowledge, entirely new. In
our 2d tests, the optimizations presented in this chapter lead to the best execution times, see
details in Chapter 8.

Chapter 5 then presents the happy wedding between chunked sequences — linked lists of
fixed-capacity arrays, see Figure 3.1 — and the PIC method. In our 3d tests, the algorithms
presented in this chapter lead to the best execution times, see details in Chapter 8.

Chapter 6 describes an implementation of the semi-Lagrangian (SL) method in 2d, using
domain decomposition. This chapter is completely independent from the others, except from
the initial Chapter 1. The data structures for this method are entirely different from the PIC
ones, and the fact that we use domain decomposition leads to a truly different MPI behavior. An
algorithm which gets rid of state-of-the-art limitations for this method is presented, and future
directions for this implementation are also described. The source files for this implementation
are not part of Pic-Vert.

Chapter 7 describes in detail the verification and validation of our implementation. It also
details how to use both the PIC and the SL method together in a same implementation.

Chapter 8 concludes this thesis and shows some possible future directions.

3.2 Publications

This thesis is based on the following publications:

[i] Y. Barsamian, S. A. Hirstoaga, and É. Violard. “Efficient Data Structures for a Hybrid Par-
allel and Vectorized Particle-in-Cell Code”. In: 2017 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). IEEE Computer Society, 2017, pp. 1168–1177.

DOI: 10.1109/IPDPSW.2017.74
Slides: http://www.barsamian.am/Slides/slides_2017-06-02.pdf.

http://dx.doi.org/10.1109/IPDPSW.2017.74
http://www.barsamian.am/Slides/slides_2017-06-02.pdf
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[ii] Y. Barsamian, A. Charguéraud, and A. Ketterlin. “A Space and Bandwidth Efficient
Multicore Algorithm for the Particle-in-Cell Method”. In: Parallel Processing and Applied Math-
ematics: 12th International Conference (PPAM). vol. 10777. Lecture Notes in Computer Science.
Springer, Cham, 2018, pp. 133–144.

DOI: 10.1007/978-3-319-78024-5_13
Slides: http://www.barsamian.am/Slides/slides_2017-09-11.pdf.

[iii] Y. Barsamian, S. A. Hirstoaga, and É. Violard. “Efficient Data Layouts for a Three-
Dimensional Electrostatic Particle-in-Cell Code”. In: Journal of Computational Science 27 (2018),
pp. 345–356.

DOI: 10.1016/j.jocs.2018.06.004.

[iv] Y. Barsamian, J. Bernier, S. A. Hirstoaga, and M. Mehrenberger. “Verification of 2D ×
2D and two-species Vlasov–Poisson solvers”. In: ESAIM: Proceedings and Surveys 63 (2018),
pp. 78–108.

DOI: 10.1051/proc/201863078
Slides: http://www.barsamian.am/Slides/slides_2016-08-25.pdf.

[v] Y. Barsamian, A. Charguéraud, S. A. Hirstoaga, and M. Mehrenberger. “Efficient Strict-
Binning Particle-in-Cell Algorithm for Multi-Core SIMD Processors”. In: 24th International Con-
ference on Parallel and Distributed Computing (Euro-Par). Vol. 11014. Lecture Notes in Computer
Science. Springer, Cham, 2018, pp. 749–763.

DOI: 10.1007/978-3-319-96983-1_53
Slides: http://www.barsamian.am/Slides/slides_2018-08-30.pdf.

This last publication comes with the following artifacts1 (“Best Artifact Award”):

[vi] Y. Barsamian, A. Charguéraud, S. A. Hirstoaga, and M. Mehrenberger. Software artifacts
for Euro-Par 2018 paper: “Efficient Strict-Binning Particle-in-Cell Algorithm for Multi-Core SIMD
Processors”. Figshare. 2018.

URL: https://doi.org/10.6084/m9.figshare.6391796.

Chapter 6 is also based on a work presented but not published:

[vii] Y. Barsamian and M. Mehrenberger. “Semi-Lagrangian Simulations for Solving 2d2v
Vlasov–Poisson Systems (one and two species)”. In: Platform for Advanced Scientific Comput-
ing (PASC), Minisymposium “Kinetic Simulations on HPC Platforms for Plasma Physics Applications
(3/3): Parallelization and New Hardware”. 2017.

Slides: http://www.barsamian.am/Slides/slides_2017-06-27.pdf.

We also wrote a technical report which is not contained in the present manuscript:

[viii] Y. Barsamian. “Maximum Subarray Problem in 1D and 2D via Weighted Paths in
Directed Acyclic Graphs”. Tech. rep. Université de Strasbourg, 2016.

URL: https://hal.archives-ouvertes.fr/hal-01585324.

3.3 Comparison Between Pic-Vert and Other Implementations

Tables 3.1–3.3 give performances that can be found (or deduced) in recent papers. We already
emphasized that comparing efficiency of multiple implementations is a very difficult task, see
the end of Section 1.3.3. In Section 2.5, we also saw some articles which explain in detail that
the interpolation scheme changes the performance a lot. In those tables, almost all the imple-
mentations use linear interpolation (except PIConGPU which uses second order interpolation),

1Please forgive us for a mistake in the simulation files: one should read != instead of == in the line
if (strcmp(parameters.sim_distrib_name, STRING_NOT_SET) == 0), or else the simulation will always load
the default initial distribution, and not the one asked in the parameter file.

http://dx.doi.org/10.1007/978-3-319-78024-5_13
http://www.barsamian.am/Slides/slides_2017-09-11.pdf
http://dx.doi.org/10.1016/j.jocs.2018.06.004
http://dx.doi.org/10.1051/proc/201863078
http://www.barsamian.am/Slides/slides_2016-08-25.pdf
http://dx.doi.org/10.1007/978-3-319-96983-1_53
http://www.barsamian.am/Slides/slides_2018-08-30.pdf
https://doi.org/10.6084/m9.figshare.6391796
http://www.barsamian.am/Slides/slides_2017-06-27.pdf
https://hal.archives-ouvertes.fr/hal-01585324
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and all the implementations use leap-frog time-stepping. It is thus possible to compare the
performance of those implementations. In papers, performance results are given in absolute
figures, but architectures used vary a lot. Since PIC implementations are memory bound, we
designed a new metric in order to compare the relative performances of PIC implementations.

In those tables, the normalized column gives the number of particles processed per second
divided by the theoretical bandwidth of the architecture. We believe that this is a figure that
makes sense to be compared (higher is better). This metric is not perfect: it is not hard to
understand that the number of cores has also some impact on the performance. But we think
that it is a relatively fair and really simple way of making comparisons.

Our metric to compare PIC implementations

One last thing that we must acknowledge is that our implementation solves the Vlasov–
Poisson system (1.5), and most of those other implementations solve the Vlasov–Maxwell sys-
tem (1.4). Exact comparison is thus not possible, but the difference between those two systems
is not a lot. Roughly speaking, to solve the Vlasov–Maxwell system, one needs two additional
arrays (magnetic field, current), and additional computations. In a 3d simulation, we perform
144 floating-point operations per particle (a new optimization makes us avoid 6 operations per
particle, see Section 4.3.2) — 209 operations when normalized to single precision —, while it
is reported that at least 246 operations are needed for a cold plasma with the Vlasov–Maxwell
system [47]. The additional computations do not harm performance, since the implementa-
tion is memory bound — see the performance of our 2d3v implementation in Table 3.2 where
those additional computations are performed. The additional accesses to the magnetic field
should not be a problem since we make only one access per cell per iteration thanks to the
strict-binning approach, see Chapter 5. The only thing that really matters is the deposit of the
current, which has to be done on multiple cells when a particle changes cell. This could harm
performance when we have fast particles, but in practice in most test cases and implementa-
tions found in the literature, particles do not move a lot per iteration.

In summary, those tables give what we view as a fair comparison between PIC implemen-
tations, when looking at the normalized column (we recall that higher is better). Most recent
implementations do not show results in 2d nor 2d3v, so the most important table is Table 3.3.
In this table we see that our implementation outperforms other ones on CPU. To prove that
our metric is relevant and has not been forged to show a fake superiority of our implementa-
tion, we provide in this table results on an architecture close to the one used by other recent
papers: on Intel Haswell (Intel Xeon E5-269X), we obtain a x3 speedup over other implementa-
tions which also use Intel Haswell with the same memory bandwidth — even though the other
implementations had access to more cores.
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2d Imple-
menta-
tion

Architecture parameters Nb. part./s
(in mil-
lions)

Arithmetic
(in GFlop-
s/s)

Memory
band-
width

Normalized
(in million
part./GB)

UPIC
2014 [53]

Intel Xeon-X5650:
12 cores, 64 GB/s

383 23.0 15.3 GB/s 6.0

SeLaLib
2016 [51]

Intel Xeon E5-2670:
8 cores, 51.2 GB/s

132 - 9.5 GB/s 2.6

PSC
2016 [59]

AMD Opteron 6274:
16 cores, 51.2 GB/s

125 - - 2.4

Pic-Vert
2017 [204]

Intel Xeon E5-2680:
8 cores, 51.2 GB/s

266 16.5 26.8 GB/s 5.2

Pic-Vert
2018 [202]

Intel Xeon E5-2697 v4:
18 cores, 76.8 GB/s

861 53.4 41.3 GB/s 11.2

UPIC
2014 [53]

NVIDIA Fermi M2090:
512 cores, 142 GB/s

1144 79 45.8 GB/s 8.1

Table 3.1 – Performances of some 2d PIC implementations (top: CPU; bottom: GPU).

2d3v Im-
plemen-
tation

Architecture parameters Nb. part./s
(in mil-
lions)

Arithmetic
(in GFlop-
s/s)

Memory
band-
width

Normalized
(in million
part./GB)

OSIRIS
2011 [65]

Intel Core 2 Duo E7200:
1 core, 5.67 GB/s

4.9 - - 0.9

Pic-Vert
2018 [205]

Intel Xeon Platinum 8160:
24 cores, 127.99 GB/s

910 104 59.1 GB/s 7.1

OSIRIS
2011 [65]

EVGA GeForce GTX 280:
240 cores, 141.7 GB/s

397 - 31% 2.8

Table 3.2 – Performances of some 2d3v PIC implementations (top: CPU; bottom: GPU).
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3d Imple-
menta-
tion

Architecture parameters Nb. part./s
(in mil-
lions)

Arithmetic
(in GFlop-
s/s)

Memory
band-
width

Normalized
(in million
part./GB)

VPIC
2008 [47]

IBM PowerXCell 8i
9 cores, 204.8 GB/s

173 43 49% 0.845

OSIRIS
2013 [57]

Intel Xeon E5-2680
8 cores, 51.2 GB/s

134 - - 2.62

ORB5
2016 [61]

Intel Xeon E5-2670
8 cores, 51.2 GB/s

69.1 - - 1.35

PICADOR
2016 [81]

Intel Xeon E5-2697 v3
14 cores, 68 GB/s

127 42.5 - 1.87

GTC-P
2016 [83]

Intel Xeon E5 2692 v2
12 cores, 59.7 GB/s

100 - - 1.68

PIConGPU
2016 [90]

Intel Xeon E5-2698 v3
16 cores, 68 GB/s

111 58.9 - 1.63

Pic-Vert
2018 [205]

Intel Xeon Platinum 8160
24 cores, 127.99 GB/s

740 155 53.6 GB/s 5.78

Pic-Vert
Chapter 8

Intel Xeon E5-2690 v3
12 cores, 68 GB/s

374 78 31.3 GB/s 5.49

PIConGPU
2013 [49]

NVIDIA Tesla K20X
2 688 cores, 250.0 GB/s

0.252 4982 - 0.001

PIConGPU
2016 [90]

NVIDIA Tesla GK210
2 496 cores, 480 GB/s

336 196 - 0.7

ORB5
2016 [61]

NVIDIA Tesla K20X
2 688 cores, 250.0 GB/s

177 - - 0.708

PICADOR
2016 [81]

Intel Xeon Phi 7250 (KNL)
68 cores, 115.2 GB/s

298 100 - 2.59

EMSES
2017 [72]

Intel Xeon Phi 7250 (KNL)
68 cores, 115.2 GB/s

1300 - - 11.3

Table 3.3 – Performances of some 3d PIC implementations (top: CPU; bottom: GPU, MIC).

3.4 Implementation

Pic-Vert is available at http://www.barsamian.am/Pic-Vert/.

3.4.1 Dependencies

Pic-Vert has several additional softwares to install:

• a C compiler that supports OpenMP [182]. The compiler must at least support OpenMP 3.0,
but it is better if it supports OpenMP 4.0 (#pragma omp simd; without this support, those
pragmas are desactivated in our implementation, and the vectorization would then be
done with the automatic vectorization from the compiler which usually gives less satis-
factory results). For example, icc supports OpenMP 4.0 since version 15.0 and gcc since
version 4.9.1.

• an MPI [184] wrapper. All the scripts are given for a standard installation of Open-
MPI [151], but it is possible to modify them to use another wrapper if needed.

2The low number of particles processed per second is due to expensive far-field radiation computations (≈ 95%
of the execution time). This also explains the high number of operations per second.

http://www.barsamian.am/Pic-Vert/
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• the FFTW3 library [149]. It is used to solve the Poisson equation.

• the HDF5 library [185]. This dependency is only needed to output HDF5 files, e.g., for 2d
visualizations of the particle density and of the charge density in Chapter 7. If needed,
it is possible to output binary and/or ascii files instead of HDF5 files to get rid of this
dependency, but this would decrease performance.

Here is how to install those dependencies under Ubuntu.
For the C compiler: it is possible to get the Intel compiler at https://software.intel.com/

en-us/qualify-for-free-software/student; to get the GNU compiler, type:

sudo apt-get install gcc

For openmpi and hdf5 type:

sudo apt-get install libopenmpi-dev openmpi-bin libhdf5-openmpi-dev

For the FFTW library, type:

sudo apt-get install libfftw3-dev

3.4.2 Source Files

The Pic-Vert repository is composed of several folders:

• include and src contain all the modular source files for Pic-Vert (as .h and .c files):

– alignment_crash.h: function to detect misalignment of data also on Intel i386 fam-
ily of processors3.

– compiler_test.h: compiler test to know which features can be used.

– diagnostics.c/h: electric energy diagnostics, see Chapter 7.

– fields.c/h: redundant data structure for E, see Section 2.2.2.

– hdf5_io.c/h: handling of HDF5 outputs.

– initial_distributions.c/h: possible initial distributions of particles.

– math_functions.h: useful mathematical functions not already in standard libraries.

– matrix_functions.c/h: dynamic allocation of arrays.

– meshes.c/h: data structure for the grid.

– output.c/h: handling of energy and efficiency outputs.

– papi_handlers.c/h: handling of PAPI [190] performance counters4.

– parameter_reader.c/h: reading parameter files for simulations.

– parameters.h: useful parameters (architecture, mathematics, default parameters for
simulations. . . )

– particle_type_XoX_XdXv.c/h: AoS or SoA data structure for particles, see Chap-
ter 4.

– particle_type_(concurrent_)chunkbags_of_XoX_XdXv.c/h: chunk bag data struc-
ture for particles, see Chapter 5.

– poisson_solvers.c/h: data structure for the FFT Poisson solver, see Section 2.4.

– random.c/h: pseudo-random number generators, see Section 2.3.

3See http://orchistro.tistory.com/206.
4They can be activated by adding -DPAPI_LIB_INSTALLED in the compilation line, provided that the PAPI library

is installed first.

https://software.intel.com/en-us/qualify-for-free-software/student
https://software.intel.com/en-us/qualify-for-free-software/student
http://orchistro.tistory.com/206
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– rho.c/h: redundant data structure for ρ, see Section 2.2.2.

– space_filling_curves.c/h: space-filling curves for E and ρ, see Chapter 4.

– variadic.h: macros to write functions with default arguments in C5.

• simulations contains the PIC simulations that we used throughout this thesis, and that
uses the files in the previous item.

• parameter_files contains examples of parameter files for our simulations.

• scripts_local contains the compile and run scripts for our simulations, on typical work-
stations. It notably contains a file architectural_configuration.sh that needs to be
updated with respect to the architectural configuration used.

Apart from the test cases we detail in this manuscript, other test cases are available. They
are documented in the files initial_distributions.c/h. It is possible to add some initial
distributions if needed. All the parameters can be modified in the parameter files.

5This somehow mimics the default argument feature, e.g. in C++ or Fortran, see https://gustedt.wordpre

ss.com/2010/06/03/default-arguments-for-c99/ and https://stackoverflow.com/questions/1472138/c-d

efault-arguments#33786937.

https://gustedt.wordpress.com/2010/06/03/default-arguments-for-c99/
https://gustedt.wordpress.com/2010/06/03/default-arguments-for-c99/
https://stackoverflow.com/questions/1472138/c-default-arguments#33786937
https://stackoverflow.com/questions/1472138/c-default-arguments#33786937
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Chapter 4

Pic-Vert in 2d or 3d with Periodic
Sorting

During this thesis, one of our main contributions was the optimization of a Particle-in-Cell
(PIC) implementation. In this chapter, we will explain our first optimization steps. Parts of
what is explained in this chapter appeared in two articles [204, 203]. Some of the optimizations
techniques described in this chapter are quite classical, but to the best of our knowledge the
following ones are unique in the literature:

• We applied a transformation that we call “loop-not-so-invariant code motion”: this
transformation was inspired by the loop hoisting (or loop-invariant code motion) [34,
Section 2.3.5.3]. This technique can be applied to other codes as long as some hypothe-
ses are respected.

• We used space-filling curves to reduce cache misses in 2d. Although this technique
is known in a number of regular applications, it has not been successfully used in a
PIC implementation before our work, even though some authors acknowledged that it
could be useful [44, Time 57’38”].

• We designed a new space-filling curve in 3d, to apply the previous technique to 3d.

New optimizations

The baseline of our implementation is a previous work in 2d from several colleagues [51].
This baseline, written in Fortran inside the library SeLaLib [183], is described in Section 4.1.

We first extracted the useful parts from this library and ported them to C. Once the code
was ported, we started to optimize it. Section 4.2 describes the architectures on which the
optimizations were tested.

Section 4.3 describes the optimizations that were useful in 2d on a single core. This section
will describe in detail the methodology adopted and the optimization techniques used.

Section 4.4 explains some parallelization issues, both with OpenMP and MPI.
Finally, Section 4.5 gives new insights for the optimization methodology on multi-core, ex-

plains a new optimization and how to port the previous optimizations in the context of 3d
simulations.

4.1 Baseline SeLaLib Implementation

First of all, we would like to express our gratitude to all the contributors of the SeLaLib library,
that provided an initial 2d PIC implementation from which we could work. This implementa-
tion, detailed in [51], features:

• “Cell index plus offset” particle representation. See Section 2.2.1.
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icps-gc-6 Curie Marconi A3
Processor Intel Xeon E5-2650

v3 (Haswell)
Intel Xeon E5-2680

(SandyBridge)
Intel Xeon Platinum

8160 (Skylake)
RAM 16 GB 64 GB 96 GB
# memory channels 2 4 6
Memory bandwidth 34 GB/s 51.2 GB/s 127.99 GB/s
# cores 10 8 24
Clock frequency 2.3 GHz 2.7 GHz 2.1 GHz
Floating-point 736 GFlops/s 345.6 GFlops/s 1 612 GFlops/s

Table 4.1 – Architectural parameters of one socket of our test machines.

• Array of Structures for particle data structure. See Section 2.2.1.
• Redundant arrays for E and ρ. See Section 2.2.2.
• In-place particle sorting. See [43].
• Shared memory parallelism (OpenMP): parallel particle loop.
• Distributed memory parallelism (MPI): particle decomposition. See Section 2.6.
• Single Instruction Multiple Data (SIMD) parallelism (vectorization): not exploited.
• Throughput: 132 million particles per second on an 8-core Intel Sandy Bridge. See Ta-

ble 3.1.

When porting a Fortran code to C, one can think of f2c [145]. This was not an option, since
the C code had to be readable and since SeLaLib is written in modern Fortran. To be able to
extract the needed parts from the library, an Integrated Development Environment (IDE) was
more than helpful. IDEs for Fortran are less easy to find than for C. We used Code::Blocks IDE
for Fortran [189].

4.2 Test Architectures

The results presented in this chapter come from simulations run on different computers.
Our Inria team machine “icps-gc-6”. This machine features 2 sockets, and each of those

sockets is an Intel Xeon E5-2650 v3 @2.3 GHz (Haswell) with 16 GB of RAM, 2 memory chan-
nels, and 10 cores. Its theoretical memory bandwidth peak is 34 GB/s (only 2 memory channels
installed on a maximum of 41), its theoretical single precision floating-point operation peak is
736 GFlops/s. On this machine, we had access to gcc 6.2 and icc 17.0.02.

The GENCI supercomputer “Curie”3 (5 040 nodes). Each node features 2 sockets, and each
of those sockets is an Intel Xeon E5-2680 @2.7 GHz (SandyBridge) with 64 GB of RAM, 4 mem-
ory channels, and 8 cores). Its theoretical memory bandwidth peak is 51.2 GB/s, its theoretical
single precision floating-point operation peak is 345.6 GFlops/s. On this machine, we had
access to gcc 6.1 and icc 16.0.3.210.

The A3 partition of the CINECA supercomputer “Marconi”4 (2 304 nodes). Each node fea-
tures 2 sockets, and each of those sockets is an Intel Xeon Platinum 8160 @ 2.1 GHz (Skylake)
with 96 GB of RAM, 6 memory channels, and 24 cores. Its theoretical memory bandwidth peak
is 127.99 GB/s, its theoretical single precision floating-point operation peak is 1 612 GFlops/s.
On this machine, we had access to icc 17.0.4.

Table 4.1 summarizes the architectural parameters of those machines. Because our PIC
implementation is memory-bound, the parameter that matters most is the memory bandwidth.

1http://ark.intel.com/products/81705
2Thanks to https://software.intel.com/en-us/qualify-for-free-software/student
3http://www-hpc.cea.fr/fr/complexe/tgcc-curie.htm
4https://www.cineca.it/en/content/marconi

http://ark.intel.com/products/81705
https://software.intel.com/en-us/qualify-for-free-software/student
http://www-hpc.cea.fr/fr/complexe/tgcc-curie.htm
https://www.cineca.it/en/content/marconi
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Optimization Number of codes
Loop Fission, see Section 4.3.2 2 (1 loop or 3 loops)
Loop-not-so-invariant code motion, see Section 4.3.2 2 (with or without)
Data structure for E and ρ, see Section 4.3.3 5 (2d or redundant with 4 different

space-filling curves)
Vectorized update-positions code, see Section 4.3.4 2 (before or after)
Data structure for the particles, see Section 4.3.4 2 (AoS or SoA)

Table 4.2 – The different optimizations presented in this section.

4.3 Single Core Optimizations in 2d

4.3.1 Methodology

When a code transformation is performed, it can increase or decrease the efficiency. When an-
other one is performed, the same applies. But what happens if we perform multiple optimiza-
tions? Even though two transformations each improve efficiency, it is not clear what happens
to efficiency if we perform them together. Because different compilers perform different sets of
automatic transformations, it is not obvious neither what happens if we change the compiler.
Last but not least, it is far less obvious what happens if we change the target architecture.

In this section, we will fully investigate the first question: what happens when we perform
multiple code transformations? When applying transformations to the code, we thus made
sure to keep all versions of the code: we ended up with a lot of different versions. For the parti-
cle data structure, fully different codes where needed (this choice has implications everywhere
in the code). We enabled the other optimizations with compilation flags or with command line
options. In total, we had 2× 2× 2× 2× 5 = 80 different codes automatically tested for this
section, inside two standalone C files of around 3 100 lines each. Table 4.2 summarizes those
optimizations, that will be presented in this section.

“ [...] quis custodiet ipsos custodes?5

Juvenal [197, Satire VI, Lines 347–348] ”In high-performance programming, the programmer is the optimizer who improves the
efficiency of his or her implementation. But who will optimize the optimizers? The answer
might well be meta-programming. We indeed remark that some — but not all — of these
transformations could have been generated automatically through meta-programming, e.g.,
with the framework BOAST [177].

Another parameter has to be taken into account: the number of time steps between two
successive sortings of the particle array (the step in lines 4–5 in Figure 2.2). This parameter can
be tuned manually, or automatically according to a mathematical model [70]. For one of the
space-filling curves, an additional parameter had to be tuned, and in our case it was manually
tuned. The best value for this parameter depends on hardware, and it can also be automatically
found via self-tuning, following what is done in the libraries FFTW [149], ATLAS [179], and
many others.

Once we have the 80 different codes to test and the corresponding scripts to run them, the
question is: how do we perform the tests? In this section, all the simulations were run on a
single core of icps-gc-6 (see Table 4.1). We believe that, before starting to run simulations in
parallel, the sequential version should be fully optimized.

It should be noted that when performing optimizations, we paid attention to achieve similar
efficiency when using both Intel and GNU compilers. This means that each of those 80 different

5“[...] who will ward the warders?” Juvenal (translation by G. G. Ramsay)
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Physical test case Linear Landau damping [5, Section 5.15], initial distribution

f (x, y, vx , vy, t = 0) =
(
1 + 0.01 cos

(
x
2

)
cos

( y
2

)) 1
2π exp

(

− v2
x+v2

y

2

)

Spatial grid [0; 4π)2 decomposed in 1282 cells, periodic boundaries
Particle shape factor Cloud-in-cell model [42]
Number of particles 50 million
Number of iterations 100 (sorting every 20 iterations)
Time step 0.1
Particle crossing:
averaged, per iteration

58% of the particles move 1 cell away, 25% move 2 cells away,
3.4% move 3 cells away, 0.18% move further away

Table 4.3 – 2d test case for sequential optimizations.

codes were compiled both with gcc and icc. To avoid statistical noise, we ran each of our
160 compiled codes 10 times, and compared the average timings on those 10 runs6.

As mentioned in Section 1.3.3, observing a phenomenon might change it. Everyone who
has tried to instrument a code has probably some funny stories to tell. One of those stories is
about a C++ code whose performance degrades when the name of a class becomes too long. . .
another one is about a code whose timings were reduced after adding a noop in the loop [153].
We did not encounter such extreme behaviors, but we did encounter one strange behavior:
when adding some code in the particle loop to instrument it (as the code was entirely in one
function, it was difficult to time it otherwise), there was at some point a dramatic increase
in the timings, just because of the instrumentation code. We managed to reduce the number
of operations to perform for this instrumentation, and at some point the dramatic increase of
the timings stopped. We speculate that those extra computations were overflowing the L1
instruction cache, which would explain the dramatic increase in the timings (because we could
observe this behavior no matter with which particular function call the timings were taken).
What can be learned from this experience is that it is good to have an external way of checking
the timings (in our case, perf) to check that the additional instrumentation does not change the
performance.

All the runs were performed with a standard linear Landau damping test case in 2d, pre-
sented in Table 4.3. Theoretical results which allow to verify the implementation are available
[5, 23]. We believe that this test case is general enough to provide an accurate view of how our
implementation would behave on other physical test cases. It is anyway impossible to run all
possible physical test cases.

4.3.2 Loop Fission and Loop-not-so-invariant Code Motion

This thesis was performed within two Inria teams. One of them, the CAMUS team, is mostly
working on the optimization of codes that contain loops. Therefore, at the very beginning
of this thesis, the first book encountered was [36]. This book describes in detail many loop
optimization techniques. It was extremely useful to apply some of those techniques to our PIC
implementation.

Loop Fission

The first optimization we implemented is the loop fission [36, Section 9.3]. More precisely, the
loop “Foreach particle” in Figure 2.2 is broken into three parts: one loop to interpolate E and
to update velocities, one to update positions, and one loop to accumulate the charge. There
are two main reasons to use three loops instead of one: (a) we can efficiently vectorize the

6In our tests, the execution times do not vary much, and 10 runs are enough to have a precise average.
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1 Foreach particle in particles
2 Interpolate E to particle
3 Update the velocity
4 Update the position
5 Accumulate particle charge to ρ

Figure 4.1 – PIC pseudo-code with one loop.

1 Foreach particle in particles Update-velocities loop
2 Interpolate E to particle
3 Update the velocity
4 Foreach particle in particles Update-positions loop
5 Update the position
6 Foreach particle in particles Accumulate loop
7 Accumulate particle charge to ρ

Figure 4.2 – PIC pseudo-code with loop fis-
sion.

update-positions as a stand-alone loop and (b) a separate processing of the arrays of E and ρ in
different loops leads to a better overall memory management.

This transformation transforms the pseudo-code in Figure 4.1 to the one in Figure 4.2, and
speeds up our implementation 18% to 25% depending on the data structure (even without
considering vectorization). Starting from now, we call “update-velocities loop” the loop which
contains both the interpolation and the velocity update.

Loop-not-so-invariant Code Motion

We also improve runtime performance by removing as much computations as possible from
the particle loops. When carefully inspecting the code, we applied an optimization that could
be used in other codes, as long as some hypotheses are verified.

The idea is the following: when we have a computation that needs a constant inside a loop,
there is a high probability that an optimization can be applied. We give here two classical
examples: loop hoisting (or loop-invariant code motion) [34, Section 2.3.5.3] and strength re-
duction [36, Section 11.1.7]. When comparing Listing 4.1 and Listing 4.2, we understand that
the two codes are equivalent. In the second one, we gain N − 1 multiplications. When com-
paring Listing 4.3 and Listing 4.4, we also understand that the two codes are equivalent. It is
however less clear why this is an optimization, until we learn that on some architectures, an
addition is faster than an addition.

1
2 for (i = 0; i < N; i++)

3 A[i] += b * c;

Listing 4.1 – First sample code. . .

1 tmp = b * c;

2 for (i = 0; i < N; i++)

3 A[i] += tmp;

Listing 4.2 – . . . with loop hoisting.

1
2 for (i = 0; i < N; i++)

3 B[i] = 3 * i;

Listing 4.3 – Second sample code. . .

1 tmp = 0;

2 for (i = 0; i < N; i++) {

3 B[i] = tmp;

4 tmp += 3;

5 }

Listing 4.4 – . . . with strength reduction.

What those two examples underline is the fact that it is possible to write more efficient code
if we apply some algebraic properties of computations, and if we allow ourselves to add some
initialization code. Modern compilers are usually able to detect when it is possible to apply
those optimizations. What we present in this subsection is a new optimization that cannot be
done by the compilers, because it changes the data stored. As an introductory example, let us
compare Listing 4.5 and Listing 4.6.
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1 for (t = 0; t < nb_iter; t++) {

2 for (j = 0; j < m; j++)

3 E[j] = f(j, t);

4 for (i = 0; i < N; i++)

5 A[i] += E[g(i)] * c;

6 }

Listing 4.5 – Third sample code. . .

1 for (t = 0; t < nb_iter; t++) {

2 for (j = 0; j < m; j++)

3 E_[j] = f(j, t) * c;

4 for (i = 0; i < N; i++)

5 A[i] += E_[g(i)];

6 }

Listing 4.6 – . . . with loop-not-so-invariant
code motion.

A careful inspection of those two codes will make us understand why they are equivalent
— provided that we do not use the array E elsewhere in the code. Of course, because E_ is equal
to E * c, then both updates of A are equivalent.

One might wonder why this transformation is an optimization. The answer lies in the
numbers m and N. Listing 4.5 performs nb_iter * N multiplications, and Listing 4.6 performs
nb_iter * m multiplications. When m < N, this transformation then reduces the number of
operations needed.

In our PIC implementation, things are slightly more complicated. To understand the actual
transformation performed, let us now compare Listing 4.7 and Listing 4.8.

1
2
3 for (t = 0; t < nb_iter; t++) {

4 for (j = 0; j < m; j++)

5 E[j] = f(j, t);

6 for (i = 0; i < N; i++) {

7 A[i] += E[g(i)] * c;

8 B[i] += A[i] * d;

9 }

10 }

Listing 4.7 – Fourth sample code. . .

1 for (i = 0; i < N; i++)

2 A_[i] = A[i] * d;

3 for (t = 0; t < nb_iter; t++) {

4 for (j = 0; j < m; j++)

5 E_[j] = f(j, t) * c * d;

6 for (i = 0; i < N; i++) {

7 A_[i] += E_[g(i)];

8 B[i] += A_[i];

9 }

10 }

Listing 4.8 – . . . with loop-not-so-invariant
code motion applied twice.

Those two codes are equivalent provided that we do not use the arrays E and A elsewhere
in the code. If we remove line 8 from both listings, we recognize the transformation from
Listing 4.5 to Listing 4.6, where we additionally multiplied E and A by d. We then understand
that both updates of B on this line are equivalent.

Of course, we can still apply loop hoisting on line 5 of Listing 4.8. We let the compiler do this
job. As for performance, Listing 4.7 performs 2 * nb_iter * N multiplications and Listing 4.8
performs N + 2 * nb_iter * m multiplications (N + 1 + nb_iter * m if we apply loop hoist-
ing). When N + 1 + nb_iter * m < 2 * nb_iter * N, this transformation then reduces the
number of operations needed.

Finally, let us remark that there is no need to introduce new arrays E_ and A_. We can update
the arrays E and A in place.

In a PIC implementation, we can apply this transformation. This is due to the fact that:
(a) to update the velocities of particles, we need to multiply the field by ∆t·q

m (it is the c of our
example) and (b) to update the positions of particles, we need to multiply the velocities by

∆t
∆{x,y} (it is the d of our example). These multiplications can hence be performed outside the
particle loop if, instead of storing the field and the velocities, we store the field multiplied by

∆t2·q
m·∆{x,y} and the velocities multiplied by ∆t

∆{x,y} . For the velocities, this can be done during the
initialization of the particles and for the electric field, this can be done at each iteration during
the Poisson solve step; compare Listing 4.9 and Listing 4.10. This optimization leads to a gain
in time of 3.5% with Intel and of 2% with GNU.

Let us remember that PIC implementations are memory bound. This transformation only
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reduces the number of computations, and is still able to increase efficiency. This transformation
is then expected to be a lot more efficient if it can be applied to compute bound codes.

We must acknowledge that this transformation leads to a code somehow harder to read,
since we now have to remember that the arrays E and v do not store the electric field and the
velocities, but those values multiplied by a constant. Even if we change the name of those
variables, it is still hard to understand how adding dx and v might yield to anything that has a
physical sense on lines 28–29 of Listing 4.10.

4.3.3 Data Structure and Layout for E and ρ: Cache Misses, Visual Insight

“ Use Hilbert space-filling curve voxel indexing
Pro: Improved temporal locality during particle advance [...]
Con: Tricky to implement [...]

K. J. Bowers [44, Time 57’38”] ”This sub-section shows how to use space-filling curves to enhance cache efficiency of a
PIC implementation. Those results are, to the best of our knowledge, unique in the literature.
Even though previous authors seem to have already implemented it, they did not explain this
method in papers.

Related Work

Space-filling curves are known to enhance cache performances on applications with regular
memory accesses such as linear algebra [121], or with irregular accesses such as the n-body
problem [124]. Nevertheless, none of those results can directly apply to a PIC implementation,
which has irregular accesses over the arrays E and ρ and not the particle array itself, as in the
n-body problem.

The space-filling curves are also of interest in particle implementations at the inter-process
level, to achieve load balancing when using domain decomposition [59] or to minimize com-
munication between processes [122], which has no impact on cache performances.

A rather popular technique on modern PIC implementations is to organize the particles by
so-called super-cells, e.g., PIConGPU [49], UPIC [53], ORB5 [61], PICADOR [81], PICSAR [87].
The space-filling curve layout we propose leads to a similar organization of the particles: par-
ticles are kept together in memory also in a block-like fashion, cf. Figure 4.5; nevertheless we
do not apply a reordering at each time step, and when we reorder, we perform this operation
by cell and not by super-cell.

Data Layouts for the Redundant Data Structure

As mentioned in Section 2.2.2, we have at our disposal two data structures for E and ρ: the stan-
dard 2d and the redundant one. The latter has been shown in [87, Section 4.1.2.] to be effective
for SIMD architectures since it enables vectorization of the accumulate loop, see Listing 2.4.

We next show that using other memory layouts for the redundant data structure decreases
the number of cache misses. We emphasize the fact that in PIC implementations, memory
accesses are a major bottleneck. Every time there is an access to a cell of E or ρ, a contiguous
portion of that array is loaded into the cache: we want to do all the computations that use these
data cells while they are still there, avoiding to reload them later from the main memory.

Since particles are moving at each iteration, a periodic sorting of the particles needs to be ap-
plied in order to improve data locality. In this manner, two particles contiguous in memory are
in the same grid cell and thus, they access the same E (or ρ) cell during the update-velocities
(or accumulate) loop. Nevertheless, sorting at every iteration would be computationally ex-
pensive and therefore we have to find a memory layout of the cells such that the cache benefits
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1 // Update - velocities

2 for (size_t i = 0; i < num_particle ; i++) {

3 [...]

4 vx[i] += dt_q_over_m * E_x_particle ; // Reads array Ex

5 vy[i] += dt_q_over_m * E_y_particle ; // Reads array Ey

6 }

7 // Update - positions

8 for (size_t i = 0; i < num_particle ; i++) {

9 x = (i_cell[i] / ncy) + dx[i] + dt_over_dx * vx[i];

10 y = (i_cell[i] % ncy) + dy[i] + dt_over_dy * vy[i];

11 [...]

12 }

Listing 4.9 – Update-velocities and update-positions loops, multiplications inside.

1 void poisson_solver ([...] double ** Ex , double ** Ey) {

2 [...]

3 for (size_t i = 0; i < ncx; i++) {

4 for (size_t j = 0; j < ncy; j++) {

5 Ex[i][j] *= dt_q_over_m * dt_over_dx ;

6 Ey[i][j] *= dt_q_over_m * dt_over_dy ;

7 }

8 }

9 }

10
11 void particle_initialization([...]) {

12 [...]

13 // WARNING : after , v doesn’t represent the speed , but speed * dt / dx.

14 for (size_t i = 0; i < num_particle ; i++) {

15 vx[i] *= dt_over_dx ;

16 vy[i] *= dt_over_dy ;

17 }

18 }

19
20 // Update - velocities

21 for (size_t i = 0; i < num_particle ; i++) {

22 [...]

23 vx[i] += E_x_particle ; // Reads array Ex

24 vy[i] += E_y_particle ; // Reads array Ey

25 }

26 // Update - positions

27 for (size_t i = 0; i < num_particle ; i++) {

28 x = (i_cell[i] / ncy) + dx[i] + vx[i];

29 y = (i_cell[i] % ncy) + dy[i] + vy[i];

30 [...]

31 }

Listing 4.10 – Update-velocities and update-positions loops, with loop-not-so-invariant code
motion.
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from the sorting last as long as possible. More precisely, using notations from Section 2.2.1, our
aim is to find a mapping (ix, iy) 7→ icell so that we obtain, when a particle changes a cell, a high
probability that its new cell-index icell is close to the old one.

We remark that the mapping of the row-major ordering in equation (4.1) has advantageous
data locality when a particle moves along the y-axis: if iy increases by one, the new cell-index
also increases by one (except for particles on the right edge of the grid), becoming the index
accessed by the following particles in the particle array. However, when a particle moves along
the x-axis, this good behavior is lost: if ix increases by one, the cell-index changes by ncy which
implies cache misses for E and ρ.

(ix, iy) 7→ icell = ix · ncy + iy

icell 7→
{

ix =
⌊

icell
ncy

⌋

iy = mod (icell, ncy)

(4.1)

Four different strategies for ordering the cells have been tested. They are listed below from
the least to the most computational-intensive, in terms of the computation of the mapping
(ix, iy) 7→ icell:

(i) Scan-order (or row-major order), cf. Figure 4.3: the canonical C memory layout.
(ii) “Column-major of row-major”-order (or L4D-order), cf. [121, Section 2.1.] and Figure 4.5.

We re-designed algorithms to convert from and to this ordering.
(iii) Morton-order ( N-order) or Lebesgue-order (Z-order), cf. [125] and Figure 4.4. Algorithms

to convert from and to this ordering can be found in [126].
(iv) Hilbert-order, cf. [123] and Figure 4.6. Algorithms to convert from and to this ordering

can be found in [127].7

Cache Misses Improvements

We present in Figure 4.7 and Figure 4.8 the evolution in time of the number of cache misses
for each of these orderings, for the L2 and L3 cache levels. As for the L1 level, we obtain very
close values for all the orderings, see also Table 4.4. At the first iteration, particles are sorted
according to the given ordering. Then, we remark the steep descent of the cache misses number
every 20 iterations due to sorting.

Clearly, the general idea those figures underline is that the three non-canonical layouts en-
tail less cache misses than the row-major one. Going further, we see that all the curves give
similar results when the particles become randomized (at least for the L2 cache). However, the
good data locality due to the sorting keeps longer in time for the three non-canonical curves
than for the row-major.

As a drawback, we notice that the time to compute icell to/from ix and iy is greater for
these layouts than for the row-major one. Thus, we need to compare in the following the
overall performance of these space-filling curves. The L4D and Morton curves give the best
results overall as reported in Table 4.5. The update-positions loop takes much larger times
when using the Hilbert ordering, the cause being that, to the best of our knowledge, there
is no “efficient-enough” algorithm for computing this bijection. Therefore being the slowest in
overall simulation time, the Hilbert ordering has to be discarded. We note that the total column
is obtained by adding to the sum of the three first columns the time of sorting. Those orderings
are faster than the row-major ordering for the accumulate loop (a 15% gain using Intel and
an 11% gain using GNU), that was already better than the standard 2d structure thanks to
vectorization. The redundant data structure with row-major ordering is not better than the

7With a small typo: in for(i=n-1;i>=0;i--) X[i] ^= X[i-1];, replace i>=0 with i>0 or it causes to read the
nonexistent cell X[-1].
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ix

iy

Figure 4.3 – Row major layout of a 16× 16 ma-
trix.

ix

iy

Figure 4.4 – Morton layout of a 16× 16 matrix.

ix

iy

Figure 4.5 – L4D layout of a 16 × 16 matrix,
SIZE=4.

ix

iy

Figure 4.6 – Hilbert layout of a 16× 16 matrix.

standard 2d structure for the update-velocities (5% lost with Intel, no time change with GNU),
but with those orderings, we are able to gain time (3% gained with Intel, 9% gained with GNU).
This might not seem significant but we emphasize that the new data structure needs four times
more memory than the standard 2d one.

The results in Table 4.5 show 3 extra seconds in the update-positions loop for the L4D and
Morton layouts. The reason is that for these two layouts we store, in addition to the cell-index
icell, the indices ix and iy for each particle. We also tested the computation of ix and iy from icell,
instead of storing them and we remarked that this is a slower approach. In contrast, for the
row-major layout, that computation can be done in only one operation and therefore we do not
need to store ix and iy.

The computation of icell can be achieved via different algorithms. In [126], two algorithms
for the Morton layout are proposed: one that takes 12 operations and one that takes 5 operations
plus two loads from a lookup table. We implemented the same idea for the L4D layout. In
both cases, the lookup table creates an indirection which is not vectorizable and therefore this
approach has to be discarded. Thus, we chose the Algorithm 5 from [126] for the Morton layout
and we propose the one in (4.2) for the L4D-order.

(ix, iy) 7→ icell = ncx · SIZE ·
⌊
iy/SIZE

⌋
+ SIZE · ix + mod(iy, SIZE)

icell 7→
{

ix = ⌊mod(icell, ncx · SIZE)/SIZE⌋
iy = mod(icell, SIZE) + SIZE · ⌊icell/(ncx · SIZE)⌋ .

(4.2)
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Figure 4.7 – Millions of cache misses per iter-
ation for the cache level 2 during the update-
velocities and accumulate loops. Test case in
Table 4.3.
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Figure 4.8 – Millions of cache misses per iter-
ation for the cache level 3 during the update-
velocities and accumulate loops. Test case in
Table 4.3.

L1 L2 L3
Row-major 95.4 43.3 4.94
L4D 92.0 27.8 3.14
Morton 91.1 27.0 3.20
Hilbert 90.9 27.1 3.29
Improvement −3.5% −36% −36%

Table 4.4 – Average cache misses per iteration
(in millions) for the update-velocities and ac-
cumulate loops. Test case in Table 4.3.

Up. v Up. x Acc. Total
2d standard8 30.6 12.5 20.7 74.3
Row-major 32.3 12.8 14.9 70.5

L4D 29.7 15.9 12.7 68.8
Morton 29.6 15.3 12.7 69.0
Hilbert 30.0 133.1 12.8 185.8

Table 4.5 – Time spent in the different loops
(in seconds). Test case in Table 4.3.

Additional Remarks

For the L4D-order, we have to choose carefully the SIZE number depending of the cache sizes.
In our tests, SIZE=8 led to the best times. The Morton-order gives the same speedup as the
L4D-order, and does not depend on cache sizes: the update-velocities and accumulate loops
become cache-oblivious [150].

As a remark, this optimal choice of SIZE=8 is a divisor of our grid size 128. But it is to note
that choosing a value of SIZE that does not divide ncy is possible: then, there will be a few
allocated cells that correspond to physical positions outside the boundaries and that will never
be accessed.

Can You See it at a Glance?

“ In order to convince ourselves of the presence or of the quality of an object, we
like to see and to touch it. [...] We prefer, of course, a short and intuitive argument
to a long and heavy one: Can you see it at a glance?

G. Pólya [31, Part I, Section 13] ”

8The 2d standard data structure for E and ρ is storing them as E[ncx][ncy] and rho[ncx][ncy], see Section 2.2.2.
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Figure 4.9 – L4D layout of a 128 × 128 matrix,
SIZE=8.

Figure 4.9 allows us to explain why the
L4D-order makes less cache misses than the
row-major order. In the following explana-
tion, we chose SIZE=8 as in the picture. It
can be replaced with other values, as long
as they are not too large for the cache (no-
tice that SIZE=ncy corresponds to the row-
major ordering). In this context, when a par-
ticle moves horizontally, 7

8 of the time, it will
lead to a new index close to the old one (icell
changed to icell + 1); only 1

8 of them will thus
generate cache misses twice. All the vertical
moves lead to a new index close to the old
one (icell changed to icell + 8) - except on the
boundary. Contrast this with the row-major
ordering, in which all the horizontal moves
are good (icell changed to icell + 1) and all the

vertical ones are bad (icell changed to icell + 128); assuming that the particles movement is
isotropic (particles move along the x and y-axes with no favorite direction), it means that we
can expect up to 43%

(
= 7

8 × 50%
)

less cache misses on E and ρ. The overall improvement
shown in Table 4.4 is nevertheless lower since we have to take into account cache misses from
the particle array.

We now give snapshots of our Landau damping simulation, to give a visual intuition of
why this works. We recall that our test case is roughly isotropic, and that different conclusions
may have to be drawn with test cases that behave very differently. We show in Figures 4.10–
4.17 snapshots of the same 2d simulation, one using the row-major curve and the other using
the L4D curve. For each ordering, two snapshots are taken: a first snapshot just after a sorting,
and another one 3 iterations later. For each ordering, a coloring is applied on the particles to
indicate which particles are close in memory. We will here focus on the black particles in the
center of the row-major ordering just after the sorting, and on the deep purple particles in the
center of the L4D ordering just after the sorting. Just after the sorting, the black particles occupy
only the center cells. Three iterations later, they are spread on 7 as many cells (some move up
to 3 cells up, some move up to 3 cells down - the ones that move horizontally do not incur the
use of new cells). Just after the sorting, the deep purple particles occupy only the center cells.
Three iterations later, they are spread on 3 as many cells (they are spread on a 14× 14 square
instead of a 8× 8 square). This explains why, when fetching the E values and when updating
the ρ values, the L4D curve will lead to less cache misses than the row-major one.

4.3.4 Vectorization of the Update-Positions Step

“ While I cannot strongly recommend this paper, I would highly recommend it
to someone who was learning vectorization for the first time, especially in a similar
problem domain.

Anonymous referee, reviewing our first article [204, Section IV.C] ”In this section, we will explain how to efficiently vectorize the update-positions loop. As
pointed by an anonymous referee, this section mostly serves the purpose of explaining the
technical details behind the vectorization in general. Mastering those details is mandatory to
unleash the power of modern architectures.

SIMD architectures can handle several operations at once: they compute on vectors rather
than on scalars. For example, with vectors of size 256 bits, it takes “as much” time to compute
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Figure 4.10 – Row-major, just after a sorting. Figure 4.11 – Row-major, 3 iterations after a
sorting.

Figure 4.12 – Row-major, just after a sorting
(zoom).

Figure 4.13 – Row-major, 3 iterations after a
sorting (zoom).

4 multiplications on double-precision real numbers (each of size 64 bits) than to compute only
one multiplication. The -ftree-vectorize compilation flag (activated from -O2 with the Intel
compiler, from -O3 with the GNU compiler) is one possibility to automatically use vector op-
erations. Another possibility is to use #pragma omp simd from OpenMP 3.0. However, in order
to enable real vector performances, we need to rewrite the code in addition to the use of an
appropriate data structure.

Array of Structures (AoS) or Structure of Arrays (SoA)?

To achieve the full power of vectorization requires that the Single Instruction operates on Mul-
tiple Data that are contiguous in memory. Using AoS for the particles leads to a stride of 4 or
8 between two data to be vectorized9. The GNU compiler does not vectorize such a code, as
shows a compilation report with -fopt-info-vec-all 2> vect_info.txt.

note: Detected interleaving of size 8

note: Data access with gaps requires scalar epilogue loop

[...]

note: not vectorized: complicated access pattern.

note: bad data access.

9If we use struct { int i_cell; float dx, dy; double vx, vy; } for particles, then p[i].dx and
p[i+1].dx are separated by memory equivalent to 8 floats; p[i].vx and p[i+1].vx are separated by memory
equivalent to 4 doubles.
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Figure 4.14 – L4D, just after a sorting. Figure 4.15 – L4D, 3 iterations after a sorting.

Figure 4.16 – L4D, just after a sorting (zoom). Figure 4.17 – L4D, 3 iterations after a sorting
(zoom).
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The Intel compiler has to use non-unit stride loads and stores, as shows a compilation report
with -qopt-report=5 -qopt-report-phase=vec. Thus, using SoA guarantees the best timings.

non-unit strided load was generated for the variable <x->dx[i]>, stride is 8

[...]

unmasked strided loads: 7

unmasked strided stores: 3

Remove the ifs

When updating the positions of the particles in a periodic setting, we need to get in the physical
domain the particles going outside. Usually, this is done by testing if the new position is still
inside the grid. Without any concern for vectorization, ifs in a program are expensive (when
incorrectly predicted, they cause rollbacks and inhibit the filling of arithmetic pipelines). More-
over, they prevent automatic vectorization (for the GNU compiler) or at best give unsatisfactory
efficiency results. Therefore, our goal is to remove the ifs thanks to an efficient rewriting of the
code.

As shown in Section 2.2.1, the positions of the particles are stored each with an integer (for
the nearest lower grid position) and a real number (for the distance to that grid position). Since
periodic boundary conditions are used, if a particle leaves the grid from one side, it goes to the
beginning of the grid from the opposite side. This can be implemented by using an extension
of the modulo10 over the reals, see Listing 4.11. One obvious way to remove the if in this
listing would be to. . . remove the line 3 that contains an if. It would work because the modulo
produces the correct value even when x ∈ [0; ncx). But then, computing the modulo for each
particle would add a lot of computations. Can we rewrite this step in a more efficient way?

1 double modulo(double a, double b) { return a - floor(a / b) * b; }

2
3 if (x < 0. || x >= ncx)

4 x = modulo(x, ncx);

5 i_x = (int)floor(x);

6 dx[i] = x - i_x;

Listing 4.11 – Update-positions step, initial code.

Two ideas for removing the ifs are proposed in [54]. However, they are only useful in the
accumulate step. For the update-positions step, however, given the assumption that no particle
will cross the full grid11, a code is shown that needs slightly less operations, see Listing 4.12.

To enable efficient vectorization, we can modify this listing by using the fact that in C, a test
returns 1 for true or 0 for false, see Listing 4.13.

1 if (x < 0.) x += ncx;

2 if (x >= ncx) x -= ncx;

3 i_x = (int)floor(x);

4 dx[i] = x - i_x;

Listing 4.12 – Update-positions step,
adapted from [54].

1 x += ((x < 0.) - (x >= ncx)) * ncx;

2 i_x = (int)floor(x);

3 dx[i] = x - i_x;

Listing 4.13 – Update-positions step,
optimized from [54].

Remove Function Calls

In the previous listings, one can see a call to the floor function. The Intel compiler vectorizes
such a function call, but this is not the case for the latest GNU compiler. In order to solve this

10modulo(a, b) is the unique real number in [0; b) such that a − modulo(a, b) is an integer multiple of b.
11Which seems reasonable: how can the simulation be precise if a particle can travel more than a full grid away

during one single iteration?
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problem, we can rewrite the code as in Listing 4.14. Because the modulo operator % returns a
value whose sign is the sign of the input value, we add b before computing the modulo. This
also uses the fact that no particle crosses the full grid.

1 #define modulo(a, b) ((a + b) % b)

2
3 floor_x = (int)x - (x < 0.);

4 i_x = modulo(floor_x , ncx);

5 dx[i] = x - floor_x;

Listing 4.14 – Update-positions step, integer computations.

Line 3 of Listing 4.14 computes (int)floor(x)12 because the cast to an integer (int)x re-
moves what is after the comma13. Thus if x is negative, we have to remove 1. This is once more
done with a test which returns 1 for true or 0 for false.

Rewriting the code in this way enables automatic vectorization by the GNU compiler too.
In addition, the Intel compiler produces faster vectorized code (31% time improvement on the
update-positions loop).

As a remark, we can note that an additional optimization may be profitable when ncx is a
power of two. When b is a power of two, computing modulo(a, b) is equivalent to computing a
bitwise AND between a and b - 1, because the numbers are encoded in binary. For example, if
we have 128 grid cells, we have to compute modulo 128: computing modulo(a, 128) in binary
is the same as taking the seven least significant bits; in other words, it is exactly a bitwise
AND between a and 12710 = 11111112

14. This optimization slightly improved efficiency on
one core. In the assembly code, there are only 4 more lines when using the classical % ncx

compared to using the less readable & ncx_minus_one when ncx is known at compile time,
compare Listing 4.15 and Listing 4.16. If ncx is not known at compile time, there is only one
more line, compare Listing 4.17 and Listing 4.18.

1 sarl $31 , %ecx

2 shrl $25 , %ecx

3 addl %ecx , %edx

4 andl $127 , %edx

5 subl %ecx , %edx

Listing 4.15 – Using % 128.

1 andl $127 , %edx

Listing 4.16 – Using & 127.

1 cltd

2 idivl %ebp

3 movl %edx , -32(%rcx)

Listing 4.17 – Using % ncx.

1 andl %ebp , %eax

2 movl %eax , -32(%rcx)

Listing 4.18 – Using & ncx_minus_one.

4.3.5 Overall Gains and Comparisons

In this section, we presented sequential optimizations. When using all the optimizations to-
gether, we remark that the simulation runs slightly faster with the Intel compiler than with the
GNU one (1.8%). Our optimizations are thus summarized in Table 4.6 with the former. In this
table, the baseline is an version of the code with the standard 2d data structure for E and ρ
and the Array of Structures for the particles. The gains (in %) are computed with respect to the
previous line and the accumulated gains are computed with respect to the baseline.

12In C, the floor function returns a double, hence the cast of floor(x) to an int.
13If x is 2.3, then (int)x is 2. However, if x is -3.14, then (int)x is -3 which is not the floor of x.
14It works also for negative numbers, thanks to the two’s complement.
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Time (s) Gains Accumulated gains
Baseline 120.4 0.0% 0.0%
+ Loop-not-so-invariant code motion 113.4 5.8% 5.8%
+ Loop Fission 97.9 13.7% 18.7%
+ Redundant arrays (E and ρ) 94.0 4.0% 21.9%
+ Structure of Arrays (particles) 76.0 19.1% 36.9%
+ Space-filling curves (E and ρ) 72.6 4.5% 39.7%
+ Optimized update-positions loop 68.8 5.2% 42.8%

Table 4.6 – Total execution time, gains and accumulated gains. Test case in Table 4.3.

Decyk & Singh work [53] Present work Present work
Push 19.9 15.6 9.1
Accumulate 9.0 4.3 2.6
Reorder 0.3 - -
Sorting - 1.9 2.0
Total 29.2 21.8 13.7
Particle crossing 12% 87% 87%
Processor Nehalem Sandy Bridge Haswell
Theoretical bandwidth 10.7 GB/s 12.8 GB/s 17 GB/s
Normalized total 312 279 233

Table 4.7 – Top: time spent per particle per iteration, in nanoseconds (lower is better, not directly
comparable). Middle: simulation and architecture parameters. Bottom: the normalized total is
Total × Theoretical bandwidth (lower is better, can be compared).

• Loop-not-so-invariant code motion: O(ncx × ncy) operations instead of O(N) opera-
tions.

• Loop fission: better memory management, allows to vectorize the update-positions
loop.

• Redundant arrays: vectorized accumulation loop.
• Structure of Arrays: stride-1 vectorization in the update-positions loop.
• Space-filling curves on the redundant data structure: 36% less cache misses on the ac-

cumulate and update-velocities loops.
• Optimized update-positions loop (no control flow, no function call): 31% less time on

that loop, able to vectorize with the GNU compiler too.

Review of different optimizations

Overall, these optimizations result in 75 million particles processed per second, on one
hyper-threaded core on Intel Haswell architecture (65 million particles processed per second
without hyper-threading). Those performances are compared in Table 4.7 to the electrostatic
2d Vlasov-Poisson implementation presented in [53], which uses domain-decomposition. The
loop called “push” in that paper corresponds to the two loops we call update-velocities and
update-positions. After that push, some of the particles move from one sub-domain to another.
This is treated in a step called “reorder” which is not a full sorting, like in our algorithm. The
reorder from that paper and the sorting in our work are separated in Table 4.7 because they
are not directly comparable. For the sorting, we ran several simulations and we found that
the optimal number of iterations between two sorting steps is 50 on Sandy Bridge architecture,
and 20 on Haswell architecture. The results in Table 4.7 are thus presented for these sorting
frequencies. As stated in Section 4.3.1, this underlines that it is interesting to implement an
automatic finding of this optimal number.
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Before explaining the parallelism that we used, let us finish this section by showing the
baseline code, in Listing 4.19 and the optimized one, in Listing 4.20. When looking at them,
one can wonder how come there is a difference of 42.8% in performance between two codes
that look so similar. The two codes are available at http://www.barsamian.am/Pic-Vert/ to
reproduce those results on other architectures15.

4.4 Parallel Optimizations in 2d

In Pic-Vert, we used the same kind of parallelism as in [51]: particle decomposition for dis-
tributed memory parallelism (MPI), see Section 2.6, and parallel loops among threads for shared
memory parallelism (OpenMP).

The new features compared to that paper are the parallelization of the sorting among threads
and OpenMP 4.5 reduction on array sections. We will describe those two features in the next
subsections, and show some performance results.

4.4.1 Particle Sorting

“ [The sorting] problem arises frequently in practice and provides fertile ground
for introducing many standard design techniques and analysis tools.

T. H. Cormen, C. E. Leiserson, R. L. Rivest & C. Stein [10, Section 1] ”Before explaining how to parallelize a sorting algorithm, let us first explain the sorting
algorithm and its goal in our application. Sorting is taking a set of elements and arrange them
following a given order. For example, in the Acknowledgements section of a thesis, there is a
set of persons and institutions that the author wishes to thank, and he or she has to abide by a
formal order in which those persons and institutions should appear.

In our PIC application, in the usual case when the particles are stored16 in an array, it has
been found that sorting this array with respect to the physical dimensions leads to substantial
gains in the execution time [54, Section VI]. However, to sort an array of N cells is generally
time-consuming: it usually needs Ω(N log N) comparison operations [10, Theorem 8.1]. Fortu-
nately, we are not interested here in a full sorting of the particles with respect to their positions.
We just need them to be sorted grid cell by grid cell. Let us take for example the coinche17 hand
of cards of Figure 4.18.

You might be interested in sorting this hand exactly, with the order ♣ < q < ♠ < r for the
colors, and inside each color, the order 7 < 8 < 9 < 10 < Jack < Queen < King < Ace. This
will take you some time, and you will end up with the left hand of Figure 4.19.

Now if you just want the cards ordered color by color, the sorting is faster. For example
for each color you can just let the cards be in their initial order, and you will end up with
the right hand of Figure 4.19. In the following, we will be interested only in this last sorting.
The algorithm we will use to achieve such a goal is called the counting sort [10, Section 8.2].
Together with the radix sort [10, Section 8.3], it is one of the most popular algorithm to sort
particle arrays in the literature (e.g., [47, 59]). There are only two requirements for the counting
sort: that each array element has a key associated, and that there is a finite number of keys.

When the number of keys is O(N) (which is true here, because we always have more par-
ticles than grid points), the main advantage of this sorting algorithm is that its complexity is
O(N) instead of O(N log(N)).

The main drawback of this sorting algorithm is that it requires an auxiliary array to be
really fast, thus doubling the memory requirements. The initial SeLaLib implementation used

15Respectively in sim2d_aos_1valueERho_baseline.c and in sim2d_soa_4corners_ipdpsw2017.c.
16Do not mix stored and sorted :)
17A French card game, see https://en.wikipedia.org/wiki/Coinche

http://www.barsamian.am/Pic-Vert/
https://en.wikipedia.org/wiki/Coinche
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1 for (size_t i = 0; i < num_particle ; i++) { // Particle loop

2 i_x = particles [i]. i_cell / ncy;

3 i_y = particles [i]. i_cell % ncy;

4 Ex = ( particles [i].dx) * ( particles [i].dy) * E1[i_x + 1][ i_y + 1]

5 + (1. - particles [i].dx) * ( particles [i].dy) * E1[i_x ][ i_y + 1]

6 + ( particles [i].dx) * (1. - particles [i].dy) * E1[i_x + 1][ i_y ]

7 + (1. - particles [i].dx) * (1. - particles [i].dy) * E1[i_x ][i_y ];

8 Ey = ( particles [i].dx) * ( particles [i].dy) * E2[i_x + 1][ i_y + 1]

9 + (1. - particles [i].dx) * ( particles [i].dy) * E2[i_x ][ i_y + 1]

10 + ( particles [i].dx) * (1. - particles [i].dy) * E2[i_x + 1][ i_y ]

11 + (1. - particles [i].dx) * (1. - particles [i].dy) * E2[i_x ][i_y ];

12 particles [i].vx += dt_q_over_m * Ex;

13 particles [i].vy += dt_q_over_m * Ey;

14 x = i_x + particles [i].dx + dt_over_dx * particles [i].vx;

15 y = i_y + particles [i].dy + dt_over_dy * particles [i].vy;

16 if (x < 0. || x >= ncx)

17 x = modulo(x, ncx);

18 if (y < 0. || y >= ncy)

19 y = modulo(y, ncy);

20 i_x = (int)floor(x);

21 i_y = (int)floor(y);

22 particles [i].dx = x - i_x;

23 particles [i].dy = y - i_y;

24 particles [i]. i_cell = i_x * ncy + i_y; // Row -major

25 rho_2d[i_x ][ i_y ] += (1. - particles [i].dx) * (1. - particles [i].dy);

26 rho_2d[i_x ][ i_y + 1] += (1. - particles [i].dx) * ( particles [i].dy);

27 rho_2d[i_x + 1][ i_y ] += ( particles [i].dx) * (1. - particles [i].dy);

28 rho_2d[i_x + 1][ i_y + 1] += ( particles [i].dx) * ( particles [i].dy);

29 }

Listing 4.19 – Baseline 2d code.

1 for (size_t i = 0; i < num_particle ; i++) { // Update velocities

2 vx[i] += ( dx[i]) * ( dy[i]) * field_accu [i_cell[i]]. Ex_ne

3 + (1. - dx[i]) * ( dy[i]) * field_accu [i_cell[i]]. Ex_nw

4 + ( dx[i]) * (1. - dy[i]) * field_accu [i_cell[i]]. Ex_se

5 + (1. - dx[i]) * (1. - dy[i]) * field_accu [i_cell[i]]. Ex_sw;

6 vy[i] += ( dx[i]) * ( dy[i]) * field_accu [i_cell[i]]. Ey_ne

7 + (1. - dx[i]) * ( dy[i]) * field_accu [i_cell[i]]. Ey_nw

8 + ( dx[i]) * (1. - dy[i]) * field_accu [i_cell[i]]. Ey_se

9 + (1. - dx[i]) * (1. - dy[i]) * field_accu [i_cell[i]]. Ey_sw;

10 }

11 #pragma omp simd

12 for (size_t i = 0; i < num_particle ; i++) { // Update positions

13 x = icx[i] + dx[i] + vx[i];

14 y = icy[i] + dy[i] + vy[i];

15 ic_x = (int)x - (x < 0.);

16 ic_y = (int)y - (y < 0.);

17 icx[i] = (ic_x + ncx) % ncx;

18 icy[i] = (ic_y + ncy) % ncy;

19 dx[i] = x - ic_x ;

20 dy[i] = y - ic_y ;

21 i_cell[i] = COMPUTE_I_CELL (icx[i], icy[i]); // L4D (macro)

22 }

23 for (size_t i = 0; i < num_particle ; i++) { // Accumulate

24 #pragma omp simd

25 for (corner = 0; corner < NB_CORNERS_2D ; corner ++)

26 charge_accu [NB_CORNERS_2D * i_cell[i] + corner] +=

27 (coeffs_x [corner] + signs_x[corner] * dx[i]) *

28 (coeffs_y [corner] + signs_y[corner] * dy[i]);

29 }

Listing 4.20 – Optimized 2d code.
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Figure 4.18 – Sample hand
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Figure 4.19 – Sorted hands

an in-place (without auxiliary array) sorting, and we thus replaced it with an out-of-place (with
an auxiliary array) one since the beginning, to improve performances.

Let us follow this algorithm in its out-of-place version to sort our coinche hand. We have
our initial hand, stored in an array cards of 8 cells. Our first goal is to count the number of
cards of each color. We will store this number in the nb_card array.

cards A
q

10
r

7
r

Q
♠

7
q

7
♣

K
q

A
♣

color q r r ♠ q ♣ q ♣
color ♣ q ♠ r

nb_card 2 3 1 2

Now, we will put the cards in another tmp array, sorted by color. It is easy to see, thanks
to the nb_card array, that the club cards will be in the first two cells, then the diamond cards
in the next three cells, then the spade card in the next cell, and the heart cards in the last two
cells. We would like to have an easy way, whenever we look at a card in the cards array, to
know directly in which cell of the tmp array to put it. To do this, first we compute a prefix sum18

of the nb_card array. This is just to know directly that the first club card will go in index 0, the
first diamond card will go in index 2 (after the two club cards), the first spade card will go in
index 2 + 3 = 5 (after the two club cards and the three diamond cards), and the first heart card
will go in index 2+ 3 + 1 = 6 (after the two club cards, the three diamond cards, and the spade
card). We will call this array next_index, because it tells us which is the index of the next card
we have to put, for each color. For now, this array is:

color ♣ q ♠ r

next_index 0 2 5 6

The rest of the algorithm is straightforward. We go through the cells of cards, we put each
card at the next_index of its color, and increment this value for the next card of this color. The
different steps of this algorithm are depicted in Figure 4.20.

We can now focus on the counting sort inside a PIC implementation. To have a shorter code
to look at, we will suppose that:

• our N particles are stored as an array of structures, i.e. we have a particles array, where
particles[i] holds the offset and velocity of the i-th particle.

• we have an additional array i_cell, where i_cell[i] holds the cell index of the grid cell
containing the i-th particle.

18Also called scan of an array A, defined as S[i] = ∑
i−1
k=0 A[k]
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Figure 4.20 – Counting sort on a coinche hand.

1 struct { float dx , dy;

2 double vx , vy; } particle3 ;

3 particle3 * particles ;

4 int* i_cell;

5 particle3 * parts_tmp ;

6 int* icell_tmp ;

Listing 4.21 – Data structures for the counting sort.

• parts_tmp and icell_tmp are the required auxiliary arrays that contains the particle data
sorted at the end of the algorithm. A simple pointer swap enables to have the arrays
particles and i_cell sorted. In the case where a pointer swap is impossible, one could
recopy the auxiliary arrays into the useful arrays.

Those data structures are summarized in Listing 4.21. In the actual code, we have four
arrays for the offsets and velocities, following a structure of arrays data structure. This adds a
lot of noise in the code, which explains why we present the code with this modification. The
sequential code of our counting sort is given in Listing 4.22.

Now, let us try to parallelize such a code, with OpenMP. The number of threads that compute
in parallel in OpenMP can be chosen before the program starts. In several parts of our program,
we can ask them to work together (we open a parallel region with #pragma omp parallel), or
we can let one of them do the job (outside a parallel region or if we add a single region inside a
parallel one with #pragma omp single).

First, because nb_cell = o(N), we know that the “scan” part (lines 4–7) can be treated in
sequential without changing much the scalability, because its cost is negligible. There exist a
dedicated algorithm to do this in parallel in O(N/p + log p) with p ≤ N threads [138, 21], but
we can avoid it here, and just treat it sequentially.
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1 // Count the particles in each cell

2 for (i = 0; i < N; i++)

3 nb_particle [i_cell[i]]++;

4 // Scan : S[i] = ∑
i−1
k=0 A[k]

5 next_index [0] = 0;

6 for (j = 1; j < nb_cell; j++)

7 next_index [j] = next_index [j -1] + nb_particle [j-1];

8 // Everything in its right place

9 for (i = 0; i < N; i++) {

10 old_index = next_index [i_cell[i]]++; // Store value before incrementation

11 parts_tmp [old_index ] = particles [i];

12 icell_tmp [old_index ] = i_cell[i];

13 }

Listing 4.22 – Sequential code for the counting sort.

Let us now look at the two other parts. All the threads will be able to work on our arrays.
Remember that, because they will work on the same array, there is a risk of data races. If we run
those loops in parallel, where are the possible data races? This happens if two threads access
the same data and at least one of them is modifying it. Where are the modifications?

• line 3: if two different threads are treating two particles that lie in the same grid cell, there
is a possible race.

• line 10: the same goes here.
• lines 11–12: if we took care of avoiding races on the previous line, two different threads

will always have different values for old_index, thus no race can happen.

To parallelize this code, we can avoid the first race with #pragma omp atomic, and the sec-
ond race with #pragma omp atomic capture. We have to use two different pragmas because
the second operation is different from the first one. The first one just increments a value, while
the second one increments and “captures” its initial value. This first attempt leads to the code
given in Listing 4.23. The #pragma omp for divides the for loop iterations between the threads.

We saw that an atomic operation induces a lock on the data. You could imagine that it
thus takes more time to do the operation, and you would be right. This first, naive, attempt
to parallelize our sort is bug-free, but it is far from being optimal. How can we avoid atomic
operations while still avoiding data races? A second idea would be to divide the cells among
the different threads, and to have each thread only handle the particles that lie on the cells it
has in charge. If we assume that it is easy to make this division, and that each thread will
handle more or less the same number of particles in the cells it is in charge of, then it can be
legitimate to think of the code given in Listing 4.24. This time, we do not need anymore to
divide the for loop among the threads. Instead, each thread will iterate on the full loop, but
will only “do something” when it stumbles upon a particle it has to handle. Note that we
need a synchronization point (#pragma omp barrier) after the first for loop, to be sure that
all the threads finished updating the nb_particle array, before the prefix sum on this array is
performed. There was no need to add a barrier in the previous code, because a loop divided
among the threads with a #pragma omp for has an implicit barrier at its end.

The resulting code shows some acceptable timings, but of course we feel that something
better can be done, because even if the cost of a test is really small in front of the cost of moving
data from particles to tmp, we should succeed in writing a code without those additional
tests.

Why did we put this test? We wanted to be sure that each thread would have its own set of
particles that it handles, without interfering with other threads. This test was easy to design,
because if we divide particles cell by cell, no conflict may appear. The downside is that each
thread has to scan the whole particle array. Could we just divide the particle array among the



4.4. PARALLEL OPTIMIZATIONS IN 2D 81

1 #pragma omp parallel private (i)

2 {

3 // Count the particles in each cell

4 #pragma omp for

5 for (i = 0; i < N; i++) {

6 #pragma omp atomic

7 nb_particle [i_cell[i]]++;

8 }

9 // Scan : S[i] = ∑
i−1
k=0 A[k]

10 #pragma omp single

11 {

12 next_index [0] = 0;

13 for (j = 1; j < nb_cell ; j++)

14 next_index [j] = next_index [j-1] + nb_particle [j -1];

15 } // End single region

16 // Everything in its right place

17 #pragma omp for

18 for (i = 0; i < N; i++) {

19 #pragma omp atomic capture

20 old_index = next_index [i_cell[i]]++;

21 parts_tmp [old_index ] = particles [i];

22 icell_tmp [old_index ] = i_cell[i];

23 }

24 } // End parallel region

Listing 4.23 – First (naive) attempt to parallelize our counting sort.

1 // For example , we can set a constant number of cells per thread

2 // int num_cells_per_thread = nb_cell / omp_get_num_threads ();

3 // Then in_charge (thread_id , cell_id) can be defined as

4 // cell_id / num_cells_per_thread == thread_id ;

5 #pragma omp parallel private (i, thread_id )

6 {

7 thread_id = omp_get_thread_num (); // id of the current thread

8 // Count the particles in each cell

9 for (i = 0; i < N; i++)

10 if ( in_charge (thread_id , i_cell[i]))

11 nb_particle [i_cell[i]]++;

12 #pragma omp barrier

13 // Scan : S[i] = ∑
i−1
k=0 A[k]

14 #pragma omp single

15 {

16 next_index [0] = 0;

17 for (j = 1; j < nb_cell ; j++)

18 next_index [j] = next_index [j-1] + nb_particle [j -1];

19 } // End single region

20 // Everything in its right place

21 for (i = 0; i < N; i++) {

22 if ( in_charge (thread_id , i_cell[i])) {

23 old_index = next_index [i_cell[i]]++;

24 parts_tmp [old_index ] = particles [i];

25 icell_tmp [old_index ] = i_cell[i];

26 }

27 }

28 } // End parallel region

Listing 4.24 – Second attempt to parallelize our counting sort.
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Figure 4.21 – Sample hand divided among two threads

threads, while still ensuring that no conflict will appear? Yes we can. Think of our prefix sum
array. It reserves, for each cell index, a sufficient amount of space in the tmp array, to allow
putting particles in this array at their correct place whichever is their cell index. Now that we
think of its use, the solution is (almost) straightforward: each thread just has to reserve some
space for the particles it will handle, for each cell index.

Let us take back our card example, and let us try to parallelize the sorting of the hand
of Figure 4.18 among two threads. The first thread will put the 4 first cards at their correct
locations, and the second thread will put the 4 last cards at their correct locations, as depicted
in Figure 4.21.

Thus, thread 0 has no club cells to reserve, 1 diamond cell to reserve (the first among the 3
needed), 1 spade cell to reserve, and 2 heart cells to reserve. Thread 1 has 2 club cells to reserve
and 2 diamond cells (the last two among the 3 needed).
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thread_id 1 1 0 1 1 0 0 0

To achieve such a division of the reservation, we need to change our nb_particle and
next_index arrays. Instead of counting the total number of particles, they will count them only
thread by thread. Thus, now, nb_particle[thread_id][i] is the number of particles that are
in the i-th grid cell and handled by the thread_id-th thread, and next_index[thread_id][i] is
the index where the thread_id-th thread should put the next particle that is in the i-th grid cell
it encounters. The prefix sum also changes a little bit. We still have to count, for each cell index,
the number of particles in the previous cell indices, but we also have to count the number of
particles in the same cell index that are handled by previous threads. There remains only one
last technical question. Remember that we have two loops on the particles. How can we be
sure that each particle will be treated by the same thread in both loops? The schedule static

ensures that the two loops are divided among threads in the same way. The static schedule
will divide the number of particles evenly among threads. This should lead to a perfect load-
balancing because the cost of moving each particle from particles to tmp should be roughly
the same. This leads to the code shown in Listing 4.25.

In this third listing, the prefix sum computation requires more time, because we have now
num_threads * nb_cell cells in the array instead of just nb_cell. But this is still really small
in front of N.

A last optimization that is quite common when dealing with counting sort is to avoid hav-
ing an auxiliary array for i_cell. Because the goal is to sort the particles according to it and we
counted, for each value i, the number of particles nb_particle[i] that have icell value i, we can
just put i inside the i_cell array nb_particle[i] times. This allows to scan the i_cell array
with better locality and to avoid using a temporary array, compared to updating an auxiliary
array icell_tmp together with parts_tmp. This last optimization leads to the code shown in
Listing 4.26.
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1 #pragma omp parallel private (thread_id , i, k)

2 {

3 num_threads = omp_get_num_threads (); // number of threads

4 thread_id = omp_get_thread_num (); // id of the current thread

5 // Count the particles in each cell handled by each thread

6 for (i = 0; i < nb_cell; i++)

7 nb_particle [thread_id ][i] = 0;

8 #pragma omp for schedule (static)

9 for (i = 0; i < N; i++)

10 nb_particle [thread_id ][ i_cell[i]]++;

11 // Scan : S[i_thr][ j_cel] = ∑
i_thr−1
k=0 ∑

nb_cell−1
l=0 A[k][l] + ∑

j_cel−1
l=0 A[i_thr][l]

12 next_index [thread_id ][0] = 0;

13 for (i = 0; i < thread_id ; i++)

14 next_index [thread_id ][0] += nb_particle [i][0];

15 for (k = 1; k < nb_cell; k++) {

16 next_index [thread_id ][k] = next_index [thread_id ][k - 1];

17 for (i = thread_id ; i < num_threads ; i++)

18 next_index [thread_id ][k] += nb_particle [i][k - 1];

19 for (i = 0; i < thread_id ; i++)

20 next_index [thread_id ][k] += nb_particle [i][k];

21 }

22 // Everything in its right place

23 #pragma omp for schedule (static)

24 for (i = 0; i < N; i++) {

25 old_index = next_index [thread_id ][ i_cell[i]]++;

26 parts_tmp [old_index ] = particles [i];

27 icell_tmp [old_index ] = i_cell[i];

28 }

29 } // End parallel region

Listing 4.25 – Third attempt to parallelize our counting sort.

4.4.2 Array section from OpenMP 4.5

The update-velocities and update-positions loops can be made parallel with #pragma omp for.
The only problem arises for the accumulate loop. Only using the #pragma omp for, we have
race conditions: particles from different threads will update the same ρ values. OpenMP 4.5 can
handle this by adding reduction(+:rho[0:ncx*ncy][0:4]) to the pragma. Nevertheless, this
OpenMP 4.5 feature was not available with the latest Intel compiler. To exploit the previous ad-
vantages from this compiler, we rewrote this feature by hand (our hand-coded version showed
no overhead with gcc 6.2 when compared to the OpenMP 4.5 feature).

4.4.3 Parallel Results on Curie

Our parallel results come from simulations executed on the supercomputer Curie. Each node
has 2 sockets of 8 cores each, hence for the hybrid MPI + OpenMP results, we used one MPI process
per socket and 8 threads per process. For the pure MPI results, we used one MPI process per core.

Figure 4.22 shows a weak scaling from 1 core to 8 192 cores (512 nodes, 10% of the total
number of nodes of the Curie supercomputer). These simulations run with 50 million particles
per core in order to use the full memory of each socket. We can see that up to 8 192 cores, the
overhead due to MPI_ALLREDUCE stays acceptable with the hybrid parallelism, whereas it be-
comes a major bottleneck when using only MPI. The hybrid parallelization achieves 543 million
particles processed per second on one node (2× 8 cores).

Table 4.8 shows a strong scaling up to 8 cores, when using 50 million particles over one
socket. This table and Figure 4.22 illustrate that our implementation reaches near-ideal scala-
bility up to 4 cores, but not for 8 cores. The reason is that PIC implementations are memory-
bound and therefore, the 4 memory channels per socket limit the scalability when using more
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1 #pragma omp parallel private (thread_id , i, k)

2 {

3 num_threads = omp_get_num_threads (); // number of threads

4 thread_id = omp_get_thread_num (); // id of the current thread

5 // Count the particles in each cell handled by each thread

6 for (i = 0; i < nb_cell; i++)

7 nb_particle [thread_id ][i] = 0;

8 #pragma omp for schedule (static)

9 for (i = 0; i < N; i++)

10 nb_particle [thread_id ][ i_cell[i]]++;

11 // Scan : S[i_thr][ j_cel] = ∑
i_thr−1
k=0 ∑

nb_cell−1
l=0 A[k][l] + ∑

j_cel−1
l=0 A[i_thr][l]

12 next_index [thread_id ][0] = 0;

13 for (i = 0; i < thread_id ; i++)

14 next_index [thread_id ][0] += nb_particle [i][0];

15 for (k = 1; k < nb_cell; k++) {

16 next_index [thread_id ][k] = next_index [thread_id ][k - 1];

17 for (i = thread_id ; i < num_threads ; i++)

18 next_index [thread_id ][k] += nb_particle [i][k - 1];

19 for (i = 0; i < thread_id ; i++)

20 next_index [thread_id ][k] += nb_particle [i][k];

21 }

22 // parts_tmp in its right place

23 #pragma omp for schedule (static)

24 for (i = 0; i < N; i++) {

25 old_index = next_index [thread_id ][ i_cell[i]]++;

26 parts_tmp [old_index ] = particles [i];

27 }

28 // i_cell in its right place

29 for (i = 0; i < nb_cell; i++) {

30 stop_index = next_index [thread_id ][i];

31 start_index = stop_index - nb_particle [thread_id ][i];

32 for (k = start_index ; k < stop_index ; k++)

33 i_cell[k] = i;

34 }

35 } // End parallel region

Listing 4.26 – Fourth (and last) attempt to parallelize our counting sort: no auxiliary array for
i_cell.
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1 #pragma omp for private(i)

2 for (i = 0; i < num_particle ; i++) {

3 vx[i] += ( dx[i]) * ( dy[i]) * E_field [i_cell[i]]. x_val.north_east

4 + (1. - dx[i]) * ( dy[i]) * E_field [i_cell[i]]. x_val.north_west

5 + ( dx[i]) * (1. - dy[i]) * E_field [i_cell[i]]. x_val.south_east

6 + (1. - dx[i]) * (1. - dy[i]) * E_field [i_cell[i]]. x_val.south_west ;

7 vy[i] += ( dx[i]) * ( dy[i]) * E_field [i_cell[i]]. y_val.north_east

8 + (1. - dx[i]) * ( dy[i]) * E_field [i_cell[i]]. y_val.north_west

9 + ( dx[i]) * (1. - dy[i]) * E_field [i_cell[i]]. y_val.south_east

10 + (1. - dx[i]) * (1. - dy[i]) * E_field [i_cell[i]]. y_val.south_west ;

11 }

12 // 2 * 8 * num_particle * 2 + // double vx , vy[num_particle ] (read + write)

13 // 2 * 4 * num_particle + // float dx , dy[num_particle ] (read)

14 // 4 * num_particle + // int i_cell[num_particle ] (read)

15 // 8 * 8 * ncx * ncy // double E_field [ncx*ncy ][8] (read)

16 // => 44 num_particle + 64 ncx*ncy

Listing 4.27 – Memory bandwidth (in bytes) of the update-velocities step.

1 #pragma omp for private(x, y, ic_x , ic_y ) firstprivate (ncxminusone , ncyminusone ,

icell_param )

2 for (i = 0; i < num_particle ; i++) {

3 x = icx[i] + dx[i] + vx[i];

4 y = icy[i] + dy[i] + vy[i];

5 ic_x = (int)x - (x < 0.);

6 ic_y = (int)y - (y < 0.);

7 icx[i] = ic_x & ncxminusone ;

8 icy[i] = ic_y & ncyminusone ;

9 dx[i] = (float)(x - ic_x );

10 dy[i] = (float)(y - ic_y );

11 i_cell[i] = COMPUTE_I_CELL_2D (icell_param , ic_x & ncxminusone , ic_y &

ncyminusone );

12 }

13 // 2 * 8 * num_particle + // double vx , vy[num_particle ] (read)

14 // 2 * 2 * num_particle * 2 + // short int icx , icy[num_particle ] (read + write)

15 // 2 * 4 * num_particle * 2 + // float dx , dy[num_particle ] (read + write)

16 // 4 * num_particle // int i_cell[num_particle ] (write)

17 // => 44 num_particle

Listing 4.28 – Memory bandwidth (in bytes) of the update-positions step.

than 4 cores. To go further, we show in Figure 4.23 the memory bandwidth of our implementa-
tion, compared to that of the Stream benchmark [162]. On one hand, this histogram underlines
that the update-velocities and accumulation steps are far to reach the peak memory bandwidth
and thus, they have a good scaling up to 8 cores. Their low memory bandwidth is explained
by the high number of cache misses on the E and ρ arrays, despite the use of space-filling
curves. On the other hand, the update-positions step reaches the same memory bandwidth as
the Stream benchmark (the theoretical peak on 8 cores is 51.2 GB/s). Accordingly, this step
cannot be further fastened when using 8 cores.

The memory bandwidth of each step was computed as the number of bytes moved from/to
main memory for this step divided by the execution time of this step. The number of bytes
moved was counted by hand by inspection of the code, see Listings 4.27–4.30. The first three
steps are done once per iteration, so we multiply by the number of iterations (here 100). The
sorting step is done every 50 iterations, so we only have ⌊(num_iterations − 1)/50⌋ (here 1) to
count.

In consideration of these comments, it is not straightforward to extrapolate to 8 cores the
overall gain results presented in Section 4.3.5. On the sequential implementation, we demon-
strated that applying loop fission coupled with the SoA layout was the best choice even if fre-
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1 thread_id = omp_get_thread_num ();

2 offset = thread_id * NB_CORNERS_2D * num_cell_2d ;

3
4 #pragma omp for private(i, corner)

5 for (i = 0; i < num_particle ; i++) {

6 #pragma omp simd aligned (i_cell , dx , dy , coeffs_x , coeffs_y , signs_x ,

signs_y :VEC_ALIGN )

7 for (corner = 0; corner < NB_CORNERS_2D ; corner ++) {

8 charge_accu [offset + NB_CORNERS_2D * i_cell[i] + corner] +=

9 (coeffs_x [corner] + signs_x[corner] * dx[i]) *

10 (coeffs_y [corner] + signs_y[corner] * dy[i]);

11 }

12 }

13 // 4 * 8 * ncx * ncy * num_threads * 2 + // double charge_accu [ncx*ncy*

num_threads *4] (read + write)

14 // 2 * 4 * num_particle + // float dx , dy[num_particle ] (read)

15 // 4 * num_particle // int i_cell[num_particle ] (read)

16 // => 12 num_particle + 64 ncx*ncy*num_threads

Listing 4.29 – Memory bandwidth (in bytes) of the accumulation step.

Number of cores 1 core 2 cores 4 cores 8 cores
Million particles/s 45.8 89.9 170 266
Million particles/s - ideal 45.8 91.6 183 366

Table 4.8 – Strong scaling on one socket of Curie (Pure OpenMP). Test case: 128 × 128 grid,
50 million particles, 100 iterations simulation (sorting every 50 iterations). Architecture: Sandy
Bridge.
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1 num_threads = omp_get_num_threads ();

2 thread_id = omp_get_thread_num ();

3
4 // Count how many particles are in each cell , per thread

5 for (i = 0; i < num_cell_2d ; i++)

6 num_particle_per_cell [ thread_id ][i] = 0;

7 #pragma omp for schedule (static)

8 for (i = 0; i < num_particle ; i++)

9 num_particle_per_cell [ thread_id ][ i_cell[i]]++;

10
11 // Prefix sum , by thread

12 index_next_particle [thread_id ][0] = 0;

13 for (i = 0; i < thread_id ; i++)

14 index_next_particle [thread_id ][0] += num_particle_per_cell [i][0];

15 for (k = 1; k < num_cell_2d ; k++) {

16 index_next_particle [thread_id ][k] = index_next_particle [ thread_id ][k - 1];

17 for (i = thread_id ; i < num_threads ; i++)

18 index_next_particle [ thread_id ][k] += num_particle_per_cell [i][k - 1];

19 for (i = 0; i < thread_id ; i++)

20 index_next_particle [ thread_id ][k] += num_particle_per_cell [i][k];

21 }

22
23 // Update the _tmp arrays

24 #pragma omp for schedule (static)

25 for (i = 0; i < num_particle ; i++) {

26 icx_tmp[ index_next_particle [thread_id ][ i_cell[i]]] = icx[i];

27 icy_tmp[ index_next_particle [thread_id ][ i_cell[i]]] = icy[i];

28 dx_tmp [ index_next_particle [thread_id ][ i_cell[i]]] = dx [i];

29 vx_tmp [ index_next_particle [thread_id ][ i_cell[i]]] = vx [i];

30 dy_tmp [ index_next_particle [thread_id ][ i_cell[i]]] = dy [i];

31 vy_tmp [ index_next_particle [thread_id ][ i_cell[i]]] = vy [i];

32 index_next_particle [thread_id ][ i_cell[i]]++;

33 }

34
35 // Update i_cell

36 for (i = 0; i < num_cell_2d ; i++) {

37 stop_index = index_next_particle [thread_id ][i];

38 start_index = stop_index - num_particle_per_cell [thread_id ][i];

39 for (k = start_index ; k < stop_index ; k++)

40 i_cell[k] = i;

41 }

42 // 4 * ncx * ncy * num_threads // unsigned num_particle_per_cell [ncx*ncy*

num_threads ] (write)

43 // 4 * ncx * ncy * num_threads + // unsigned index_next_particle [ncx*ncy*

num_threads ] (write)

44 // 2 * 8 * num_particle * 2 + // double vx , vy[ num_particle ] (read + write)

45 // 2 * 4 * num_particle * 2 + // float dx , dy[num_particle ] (read + write)

46 // 2 * 2 * num_particle * 2 + // short icx , icy[num_particle ] (read + write)

47 // 4 * num_particle * 3 // int i_cell[num_particle ] (2 reads + 1

write)
48 // => 68 num_particle + 8 ncx*ncy*num_threads

Listing 4.30 – Memory bandwidth (in bytes) of the sorting step.
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AoS, 1 loop AoS, 3 loops SoA, 1 loop SoA, 3 loops
30.9 s 22.7 s 23.1 s 18.3 s

Table 4.9 – Time spent in the simulation on 8 threads (Pure OpenMP). Test case: 128× 128 grid,
50 million particles, 100 iterations simulation (sorting every 50 iterations). Architecture: Sandy
Bridge.
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quent memory movement occurs. In Table 4.9 we show that using the SoA layout with 3 loops
is still the best option on 8 cores.

Figure 4.24 shows the strong scaling of the hybrid parallelism when using 800 million parti-
cles (maximum memory on one node). The last timing on 1 024 cores is less than 5 seconds. We
thus remark that the speedup is far from ideal, when running over 64 nodes (128 processes).
This is an expected result: the communication time as percentage of the total time grows with
the increasing processes number, while the computation time per process decreases (since the
number of particles per process decreases). Thus, in the case of the 64 nodes, only 6.25 million
particles are distributed per process and the MPI communications take 32% of the total time.
Going back to Figure 4.22, when using 400 million particles per process, the same number of
processes leads to far better results (constant weak scaling) since communications take in this
case only 7% of the total time.

4.5 Further Parallel Optimizations in 2d and 3d

4.5.1 Methodology

In this section we describe different strategies to gain performance in 3d simulations. All the
simulations in this section were conducted on the Marconi supercomputer (see Table 4.1) on
which we were granted the use of 64 nodes with two 24-cores sockets each. This can be viewed
as an extension of Section 4.3 where we performed a similar analysis on a single core. Our new
approach is motivated by the differences between the optimization strategies on single core
and on multiple cores that share memory, due to the different ratios between computational
performance and memory bandwidth of the two configurations. As we wrote in Section 4.4.3,
it is not straightforward to extrapolate on the full architecture the results obtained on single
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Physical test case Linear Landau damping [5, Section 5.15], initial distribution
f (x, y, z, vx , vy, vz, t = 0) =
(
1 + 0.01 cos

(
x
2

)
cos

( y
2

)
cos

(
z
2

)) 1
(2π)3/2 exp

(

− v2
x+v2

y+v2
z

2

)

Spatial grid [0; 4π)3 decomposed in 643 cells, periodic boundaries
Particle shape factor Cloud-in-cell model [42]
Number of particles 1 billion
Number of iterations 100 (sorting every 10 iterations)
Time step 0.05
Particle crossing:
averaged, per iteration

49% of the particles move 1 cell away,
0.0015% of the particles move 2 cells away

Table 4.10 – 3d test case for OpenMP optimizations.

core.
In many cases, 3d simulations benefit from the same optimizations as 2d simulations. For

example, as in the 2d case, the loop fission improves our 3d implementation. In 3d, it increases
efficiency by 8.9%. However, we discuss in Section 4.5.3 an additional optimization that be-
haves differently in 2d and in 3d.

The results shown in this section were all obtained with the test case presented in Ta-
ble 4.10. In addition, we also simulated nonlinear Landau damping and two-stream instability
test cases. Theoretical results which allow to verify the implementation are available in [5, 23].
Thus, we checked the numerical conservation of the total energy and the numerical evolution
in time of the electric field, see details in Section 7.1.

4.5.2 Data Structure and Layout for E and ρ: L6D Curve, Implementation

Section 4.3.3 showed that space-filling curves can optimize the cache performance in 2d. To
extend this idea in 3d, we designed a new space-filling curve, the L6D, and we demonstrate
that we achieved this aim in 3d also. We thus study in 3d similar strategies for ordering the
cells: Row-major order, cf. Figure 4.25; L6D-order, cf. Figure 4.27; Morton-order, cf. Figure 4.26;
Hilbert-order, cf. Figure 4.28.

Bijection Algorithms

The aim of this section is to detail the formulas and their implementation needed for the appli-
cation of space-filling curves in a PIC implementation. When using the cell index plus offset
representation for the particles, the update-positions loop can be written as in Listing 4.31.

Section 4.3 explained the correctness of this loop, and a way of removing the computations
* delta_t / delta_{x,y,z} (lines 2–4). Below, we only focus on the i_{x,y,z}_from and
i_cell_from functions.

In 2d, the mentioned functions are given in Listing 4.32 and were defined in (4.2). They can
be set as macros or inline functions. In our code, the constant parameters are part of the macro
arguments; they are here omitted to present a shorter code, as it will not affect performance.
First, the tile size is given, as global parameter (line 1). Then, depending on the size of the grid,
we have a constant which should be set at the beginning of the simulation (line 3): the number
of cells per column gives the number of cells that are in a full column of size ncx * TILE_SIZE,
64 in Figure 4.5.

The algorithm can be explained as follows: first, we have to know in which column the
index is. This is computed as i_y / TILE_SIZE. The starting index of this column is thus
given by the computation num_cells_per_column * (i_y / TILE_SIZE). Then, in this column
of size ncx * TILE_SIZE, we recognize the row-major curve, which means we have to add
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z

Figure 4.25 – Row major layout of a 8× 8× 8
matrix.
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z

Figure 4.26 – Morton layout of a 8× 8× 8 ma-
trix.

x y

z

Figure 4.27 – L6D layout of a 16× 16× 16 ma-
trix, SIZE=4.

x y

z

Figure 4.28 – Hilbert layout of a 8× 8× 8 ma-
trix.

i_col * TILE_SIZE + j_col. On the x-axis, the index is just i_x, and on the y-axis, the index
is mod(i_y, TILE_SIZE).

In 3d, the mentioned functions are given in equation (4.3) and Listing 4.33. Previous re-
marks on the 2d functions similarly apply. First, the tile size is given, as global parameter
(line 1). Then, depending on the size of the grid, we have constants which should be set at the
beginning of the simulation (line 3). The number of cells per tower gives the number of cells
that are in a full tower of size TILE_SIZE * TILE_SIZE * ncz, 256 in Figure 4.27. The number
of cells per wall gives the number of cells that are in a full row of towers. In Figure 4.27, there
are 4 towers per wall (there are 4 towers of width TILE_SIZE = 4 in a row of ncx = 16 cells).

The explanation of the algorithm is similar to the 2d case. We have to know in which wall
parallel to the (Oxz) plane the index is, then inside this wall in which tower it is, then this is a
column-major ordering inside this tower.

(ix; iy; iz) 7→ icell = ncz · SIZE2 ·
(
⌊ix/SIZE⌋+

⌊
iy/SIZE

⌋
· ⌈ncx/SIZE⌉

)

+ iz · SIZE2 + mod(iy, SIZE) · SIZE+ mod(ix, SIZE)

icell 7→







ix = mod(icell, SIZE) + SIZE ·
⌊

mod(icell, ncz · SIZE2 · ⌈ncx/SIZE⌉)/(ncz · SIZE2)
⌋

iy = SIZE ·
⌊

icell/
(
ncz · SIZE2 · ⌈ncx/SIZE⌉

)⌋

+
⌊

mod(icell, SIZE2)/SIZE
⌋

iz =
⌊

mod(icell, ncz · SIZE2)/(SIZE2)
⌋

(4.3)
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1 for (i = 0; i < num_particle ; i++) {

2 x = i_x_from (i_cell[i]) + dx[i] + vx[i] * delta_t / delta_x ;

3 y = i_y_from (i_cell[i]) + dy[i] + vy[i] * delta_t / delta_y ;

4 z = i_y_from (i_cell[i]) + dz[i] + vz[i] * delta_t / delta_z ;

5 i_x = (int)x - (x < 0.); // floor(x)

6 i_y = (int)y - (y < 0.); // floor(y)

7 i_z = (int)z - (z < 0.); // floor(z)

8 dx[i] = (float)(x - i_x);

9 dy[i] = (float)(y - i_y);

10 dz[i] = (float)(z - i_z);

11 i_cell[i] = i_cell_from (( i_x + ncx) % ncx ,

12 (i_y + ncy) % ncy ,

13 (i_z + ncz) % ncz);

14 }

Listing 4.31 – Sample C code for the update-positions loop. We have to add the grid sizes before
applying the % operator because indices might become negative. It assumes that no particle will
cross the full grid, see discussion on page 73.

1 #define TILE_SIZE 8 // Depends on architecture .

2
3 int num_cells_per_column = ncx * TILE_SIZE ;

4
5 #define i_cell_from (i_x , i_y) (TILE_SIZE * (i_x) + \

6 ((i_y) % TILE_SIZE) + num_cells_per_column * ((i_y) / TILE_SIZE))

7 #define i_x_from (i_cell) ((( i_cell) % num_cells_per_column ) / TILE_SIZE)

8 #define i_y_from (i_cell) ((( i_cell) % TILE_SIZE) + \

9 TILE_SIZE * ((i_cell) / num_cells_per_column ))

Listing 4.32 – Efficient C code for L4D bijection functions.

1 #define TILE_SIZE 8 // Depends on architecture .

2 #define SQR_TILE_SIZE (TILE_SIZE * TILE_SIZE )

3
4 int num_cells_per_tower = ncz * SQR_TILE_SIZE ;

5 int num_cells_per_wall = num_cells_per_tower * \

6 (( ncx + TILE_SIZE - 1) / TILE_SIZE ); // ceiling(ncx/TILE_SIZE )

7
8 #define i_cell_from (i_x , i_y , i_z) \

9 (((i_x) / TILE_SIZE) * num_cells_per_tower + \

10 ((i_y) / TILE_SIZE) * num_cells_per_wall + (i_z) * SQR_TILE_SIZE + \

11 ((i_y) % TILE_SIZE) * TILE_SIZE + ((i_x) % TILE_SIZE))

12 #define i_x_from (i_cell) ((( i_cell) % TILE_SIZE) + \

13 (((i_cell) % num_cells_per_wall ) / num_cells_per_tower ) * TILE_SIZE)

14 #define i_y_from (i_cell) ((( i_cell) / num_cells_per_wall ) * TILE_SIZE + \

15 ((i_cell) % SQR_TILE_SIZE ) / TILE_SIZE)

16 #define i_z_from (i_cell) ((( i_cell) % num_cells_per_tower ) / SQR_TILE_SIZE )

Listing 4.33 – Efficient C code for L6D bijection functions.
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Up. v Up. x Acc. Sort Tot.
2d standard 59.0 39.8 41.9 28.6 171
Row-major 63.6 39.7 42.8 28.6 177

L4D arr. 57.6 48.2 33.5 41.1 183
Morton arr. 60.2 48.0 29.4 40.7 180
Hilbert arr. 64.9 49.6 30.7 40.5 193

L4D 57.5 40.0 32.0 28.6 161
Morton 59.3 39.8 29.8 28.4 160
Hilbert 59.0 323.7 33.6 28.6 452

Table 4.11 – 2d space-filling curves timings.
Time spent in the different loops (in seconds).
Test case: Landau damping 2d on a [0; 4π)2

grid decomposed in 5122 cells, 1 billion par-
ticles, 100 iterations (sorting every 20 itera-
tions), ∆t = 0.1. “arr.” indicates that we
use auxiliary arrays instead of recomputing
the indices.

Up. v Up. x Acc. Sort Tot.
3d standard 126.7 55.3 31.5 21.5 236
Row-major 92.6 55.3 31.5 21.4 202

L6D arr. 92.8 79.0 30.4 29.5 233
Morton arr. 96.5 79.0 30.3 27.5 234
Hilbert arr. 95.3 80.4 31.1 26.9 235

L6D 85.5 55.5 29.9 20.9 193
Morton 89.4 56.7 33.5 19.8 200
Hilbert 87.3 244.4 29.2 20.3 382

Table 4.12 – 3d space-filling curves timings.
Time spent in the different loops (in seconds).
Test case in Table 4.10. “arr.” indicates that
we use auxiliary arrays instead of recomput-
ing the indices

Results

We present in Tables 4.11 and 4.12 the performance gains when using the space-filling curves
we previously described. Section 4.5.2 only showed results on one core. On modern archi-
tectures, there are usually more cores than memory channels: it is thus not straightforward to
extrapolate the one core results on the full multi-core architecture; we therefore show here re-
sults on the full processor. Moreover, additional arrays to store the indices ix and iy were used
in Section 4.5.2. We show now that additional gains can be obtained with efficient computa-
tions of the bijection functions. In the tables, “arr” means that we use additional arrays to store
the indices, otherwise we recompute them.

We focus on three meaningful comparisons in Tables 4.11 and 4.12. The first one is on the
data structure: is it beneficial to use the redundant one for the E arrays? The only point where
the code changes is in the update-velocities loop. We see in the tables that in 2d, it is detrimental
to use it if we stick to the row-major curve, but it is already beneficial with the canonical curve
in 3d. We recall that we use here many particles per grid cell, and that when using only a
few particles per cell, the redundant data structure is not a good choice, see Section 4.5.4 for a
detailed comparison.

The second comparison concerns the data layout. Is it possible to obtain notable gains
by changing the ordering of the grid cells? There are two places in the algorithm where the
changes might become significant: in the interpolation and in the accumulation. This time, we
can answer positively. Yes, by taking another order than the canonical one, we can save time
(thanks to a reduction in the cache misses, see Table 4.4). In 2d, the L4D and Morton curves
seem to give similar and optimal timings, while in 3d, the L6D curve allows additional gains
and seems to be the best one.

The last comparison is on the particle data structure needed for the non-canonical orderings.
We can either store the indices in additional arrays (here, arrays of short int), or re-compute
them at each time step. When storing them, it requires more memory for the particles, therefore
we need more time in the update-positions loop and in the sorting step.

Last but not least, we see a surprising timing of the update-positions loop when using the
Hilbert ordering without additional arrays. It is due to the fact that the computation (ix, iy, iz)
from icell is expensive and not vectorized. This is thus the only curve for which using additional
arrays is profitable. Nevertheless, even with additional arrays, this curve does not improve
performances compared to the standard layout, and consequently has to be discarded.
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1 Foreach subset of k particles in particles
2 Foreach particle in this subset
3 Interpolate E to particle
4 Update the velocity
5 Foreach particle in this subset
6 Update the position
7 Foreach particle in this subset
8 Accumulate particle charge to ρ

Figure 4.29 – PIC pseudo-code with strip-
mining.

1 Foreach particle in particles
2 Interpolate E to particle
3 Update the velocity
4 Foreach subset of k particles in particles
5 Foreach particle in this subset
6 Update the position
7 Foreach particle in this subset
8 Accumulate particle charge to ρ

Figure 4.30 – PIC pseudo-code with strip-
mining on the two last loops only.

Additional Remarks

As in 2d, we have to choose carefully TILE_SIZE depending of the cache sizes. In our tests, a
value of TILE_SIZE = 8 led to the best timings. It can be replaced with other values, as long as
they are not too large for the cache.

It should be noted that choosing a value of TILE_SIZE that does not divide the grid sizes is
possible: then, there will be a few allocated cells that correspond to physical positions outside
the boundaries and that will never be accessed.

As a side note, we can remark that if grid sizes are powers of two and if the architec-
ture represents integers with two’s complement, we can save some computations on each
modulo operation (lines 11–13 in Listing 4.31). For example for the modulo in the x-axis,
we can use the variable int ncx_minus_one = ncx - 1 and then compute mod(i_x, ncx) as
i_x & ncx_minus_one. We showed that this is more efficient than (i_x + ncx) % ncx on one
core. However, when using the full 24-cores architecture, this small optimization brings no
significant gains.

We also note that it is possible to use space-filling curves without using the redundant data
structure for E. We do not show here the corresponding results, but the conclusion is that when
using a high number of particles per cell (as is our case) the redundant data structure turns out
to be the best approach. This is clearly not true when using a low (e.g., less than a hundred)
number of particles per cell.

4.5.3 Strip-mining

Even though the loop fission gives satisfactory results, it needs to scan some particle arrays
three times, thus putting a lot of pressure on the memory bus. A loop transformation that
naturally comes to mind is thus the strip-mining [36, Section 9.8]. Instead of having three loops
each scanning all the particles, we split the particle arrays in sub-arrays of size k (where k
has to be chosen, depending on the architecture), and have the three loops operate only on k
particles. Thus, for each particle, instead of having to fetch its properties in the main memory
for each loop, it is now possible to fetch its properties in the cache for the two last loops. This
transformation leads to the pseudo-code shown in Figure 4.29, and improves efficiency by 22%
in 2d.

We can note that if we choose k = 1, we are back to the base pseudo-code, which was not
optimal. If we choose k = N, we are back to the previous pseudo-code with loop fission. In our
2d experiments, choosing a strip-size k between 64 and 256 gives similar optimal results.

Unfortunately, in 3d this strip-mining does not improve performances. This is explained by
the fact that the cache is filled with too many E values, thus the expected gain in performance
coming from the cache reuse of the particle arrays is out of reach. Thus, in 3d, to be able to
efficiently reuse the particle data, the strip-mining has to be done only on the two last loops.
This transformation leads to the pseudo-code shown in Figure 4.30, and improves efficiency by
12%.
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Time (s) Gains Accumulated gains
Baseline 258.7 0.0% 0.0%
+ Loop Fission 235.8 8.9% 8.9%
+ Space-filling curves (L6D) 192.9 18.2% 25.4%
+ Strip-mining 169.5 12.1% 34.5%

Table 4.13 – Gains of different optimizations in our implementation. Total execution time, gains
and accumulated gains. Test case in Table 4.10.

In our 3d experiments, choosing a strip-size k between 32 and 128 gives similar optimal
results.

This strip-mining technique was more or less already used in VPIC [47], which advanced 4
particles at a time for vectorization (k = 4 with our notations). However, in VPIC, an additional
assumption was made — none of those 4 particles should cross cell boundaries — and scalar
code was generated for the particles that crossed cell boundaries. In our implementation, the
update-positions loop is vectorized without exceptions.

4.5.4 Overall Gains and Comparisons

The optimizations presented in this section are summarized in Table 4.13. In this table, the
baseline is a version of the code with the standard 3d data structure for E, the redundant one
for ρ, and an optimization applied that, in particular, removes the * delta_t / delta_{x,y,z}

computations (lines 2–4 in Listing 4.31), see Section 4.3.2. The gains (in %) are computed with
respect to the previous line of the table and the accumulated gains are computed with respect
to the baseline.

• Loop fission: better memory management for E and ρ, allows to vectorize the update-
positions loop.

• Redundant arrays for E together with appropriate use of space-filling curves: less cache
misses in the interpolation and in the accumulation. We note that the redundant arrays
are only useful when using at least a hundred particles per grid cell, see Table 4.14.

• Strip-mining: allows to reuse particle data between loops.

Review of different optimizations

Overall, these optimizations result in 590 million particles processed per second, on 24 cores
on Intel Skylake architecture, without hyper-threading (25 million particles per second per
core), or 1.48 ns per particle per time step (35.47 ns per particle per time step per core).

Those performances are compared in Table 4.14 to another recent PIC implementation [61],
solving the same equations with the same precision (both implementations use double pre-
cision and first order interpolations). We ran simulations with the parameters chosen in this
paper, which differ from our previous ones. Simulations presented in this paper were con-
ducted on the Piz Daint supercomputer consisting of 8 Sandy-Bridge cores @2.6 GHz with a
theoretical memory bandwidth of 51.2 GB/s (or 6.4 GB/s/core), and we recall that we used the
Marconi supercomputer consisting of 24 Skylake cores @2.1 GHz with a theoretical memory
bandwidth of 127.99 GB/s (or 5.3 GB/s/core). PIC implementations being memory bound,
comparing performances per core on those two architectures makes sense.

In the simulations of that paper, there are only 7.6 particles per cell (when using 1 million
particles), and 122 particles per cell (when using 16 million particles). The redundant data
structure for E is a good choice only if there are a lot of particles per cell (in the present work,
we use 3 815 particles per cell for our test case in Table 4.10). Of course, when there are roughly
as many particles as grid points, multiplying by 8 the data for E almost doubles the mem-
ory transfers. With such a low number of particles, using a redundant data structure for E is
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Implementation
Nb. particles

106 16 · 106 109

Jocksch et al. work [61]
(8 cores, 6.4 GB/s/core)

153.9 115.8 -

Present work
(24 cores, 5.3 GB/s/core)

854.3 93.07 36.87

Table 4.14 – Comparison with another implementation. Time spent per particle per iteration
per core, in nanoseconds. Test case [61]: Grid of 512× 256× 1 cells. Initial particle distribution
uniform in space ([0; 512) × [0; 256) × [0; 1)) and velocity ([−1; 1)3).

detrimental, and we would have to make another study for such a configuration. But with
122 particles per cell, the data layouts and code transformations presented in this section be-
come useful. At the scale of 1 billion particles, our implementation needs only 36.87 ns per
particle per iteration per core (no data for this particle number in [61] to compare).

4.5.5 Parallel Results on Marconi A3

In 2d, we used particle decomposition to parallelize our implementation on distributed mem-
ory, see Section 2.6, and showed that this kind of parallelism is “good enough”. Even though
the scalability is harmed by a logarithmic MPI_ALLREDUCE step, we showed that this overhead
remained fairly limited in practice, see Figure 4.22. In 3d, we also used particle decomposition
and the same applies: when using a large number of processes, the communication becomes
too costly. But in practice, if we use the full memory on each MPI process to put particles,
this is not the main drawback. The main bottleneck of this approach in 3d is that in realistic
simulations (using a grid bigger than our 64× 64× 64 grid), there are so many cells that the
computations on one process will be inefficient, due to the high number of cache misses in-
volved. This behavior is quite common for example in matrix computations, where you can
see super-scaling behaviors on large matrices, due to the large reduction of cache misses when
computing only on sub-blocks. This is the reason why the technique we propose in this work
should be seen as only a small brick inside a more complex scheme: one should probably use
domain decomposition on top of the efficient OpenMP algorithm we provide.

We next show a strong scaling on up to 24 cores of two versions of our implementation.
Figure 4.31 shows a strong scaling of the implementation with loop fission (pseudo-code given
in Figure 4.2) and Figure 4.32 show a strong scaling of our implementation with strip-mining
(pseudo-code given in Figure 4.30).

Figure 4.33 shows both implementations on a single graph, for comparison. On 1 thread, the
loop fission implementation is 6.7% faster, but on 24 threads the strip-mining implementation
is 12% faster.

These figures illustrate the importance of having an efficient implementation on one core,
but also the importance of precise performance analysis to enhance multi-core efficiency. On
the comparison graph, we see that up to 8 cores, the implementation with 3 loops performs
better, then the implementation with strip-mining performs better. To understand why, we can
look at the two other figures, where we show the memory bandwidth of our implementation,
compared to that of the triad test in the Stream benchmark [162]. On one hand, these his-
tograms underline that the update-velocities, accumulation and sorting steps are far to reach
the peak memory bandwidth and thus, they have a good scaling up to 24 threads. On the other
hand, the update-positions step reaches the same memory bandwidth as the Stream bench-
mark (the theoretical peak on 24 threads is 127.99 GB/s). Accordingly, this step cannot be
further accelerated when using 24 threads.
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Figure 4.31 – Memory bandwidth with loop-fission (3 loops). Test case in Table 4.10.
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Figure 4.32 – Memory bandwidth with strip-mining (2 loops). Test case in Table 4.10.
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Figure 4.34 – Weak scaling on Marconi. Test case: 64× 64× 64 grid, 1 billion particles per socket,
100 iterations simulation (sorting every 10 iterations). Architecture: Skylake. Communication
time is also shown as percentage of the execution time.

Can You See it at a Glance?

“ In order to convince ourselves of the presence or of the quality of an object, we
like to see and to touch it. [...] We prefer, of course, a short and intuitive argument
to a long and heavy one: Can you see it at a glance?

G. Pólya [31, Part I, Section 13] ”The strip-mining idea should be natural when looking at Figure 4.31: when the update-
positions loop cannot be further sped up by more cores, due to memory bandwidth limits,
merging it with another loop becomes a good idea. To merge two loops, we can either “undo”
part of our loop fission, by applying loop fusion [36, Section 9.2]; or we can use strip-mining.
To preserve the high efficiency of this vectorized loop, it is better to use strip-mining rather
than loop fusion, which would break the vectorization opportunity.

Last but not least, this transformation is easy to implement, compare Listing 4.34 and List-
ing 4.35.

4.5.6 Weak scaling on 3 072 cores with MPI

Our parallel results come from simulations executed on the supercomputer Marconi. Each
node has 2 sockets of 24 cores each, hence we used one MPI process per socket and 24 threads
per process.

Figure 4.34 shows a weak scaling from 1 core to 3 072 cores (64 nodes). These simulations
run with 1 billion particles per socket in order to use the full memory. We can see that up to
3 072 cores, the overhead due to MPI_ALLREDUCE stays acceptable, thanks to the hybrid paral-
lelism OpenMP + MPI.
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1 #pragma omp for [...]

2 for (size_t i = 0; i < num_particle ; i++) {

3 [...] // Update v

4 }

5 #pragma omp for simd [...]

6 for (size_t i = 0; i < num_particle ; i++) {

7 [...] // Update x

8 }

9 #pragma omp for [...]

10 for (size_t i = 0; i < num_particle ; i++) {

11 [...] // Accumulate

12 }

Listing 4.34 – 3d code with 3 loops.

1 // STRIP_SIZE is an architecture -dependent parameter (depends on cache size ).

2 #define STRIP_SIZE 32

3
4 #pragma omp for [...]

5 for (size_t i = 0; i < num_particle ; i++) {

6 [...] // Update v

7 }

8 #pragma omp for [...]

9 for (size_t big_i = 0; big_i < num_particle ; big_i += STRIP_SIZE ) {

10 #pragma omp simd [...]

11 for (size_t i = big_i; i < min(num_particle , big_i + STRIP_SIZE ); i++) {

12 [...] // Update x

13 }

14 for (size_t i = big_i; i < min(num_particle , big_i + STRIP_SIZE ); i++) {

15 [...] // Accumulate

16 }

17 }

Listing 4.35 – 3d code with a strip-mining on the two last steps.



99

Chapter 5

Pic-Vert in 2d or 3d with Chunks

The main difference between Pic-Vert and other PIC implementations is the use of a special-
ized data structure: the chunk bags. We introduced this idea in two articles [202, 205]. In this
chapter, we discuss in detail the advantages of this data structure for a PIC algorithm. In a
nutshell:

• are a dynamic data structure with concurrent accesses (defined in Listings 5.1 and 5.4);

• allow to keep particles sorted at all times (the so-called strict-binning approach), which
minimizes the cache misses, allows vectorization of core loops and reduces the memory
footprint of a particle;

• let the strict binning approach efficiently handle fast-moving particles.

Chunk Bags

Section 5.1 first describes the architectures on which this data structure was tested. Sec-
tion 5.2 then describes the state-of-the-art in details, and Section 5.3 explains what are the lim-
itations from the state-of-the-art that we are able to remove with chunks, and how. Section 5.4
discusses our first results with this data structure in 2d, Section 5.5 our next results with this
data structure in 3d.

5.1 Test Architectures

The results presented in this chapter come from simulations run on different computers.
Our Inria team machine “icps-gc-6”. This machine features 2 sockets, and each of those

sockets is an Intel Xeon E5-2650 v3 @2.3 GHz (Haswell) with 16 GB of RAM, 2 memory chan-
nels, and 10 cores. Its theoretical memory bandwidth peak is 34 GB/s (only 2 memory channels
installed on a maximum of 41), its theoretical single precision floating-point operation peak is
736 GFlops/s. On this machine, we had access to gcc 6.2 and icc 17.0.02.

The A1 partition of the CINECA supercomputer “Marconi”3 (1 512 nodes). Each node fea-
tures 2 sockets, and each of those sockets is an Intel Xeon E5-2697 v4 @ 2.3 GHz (Broadwell)
with 64 GB of RAM, 4 memory channels, and 18 cores. Its theoretical memory bandwidth peak
is 76.8 GB/s, its theoretical single precision floating-point operation peak is 1 325 GFlops/s. On
this machine, we had access to icc 17.0.1.

The A3 partition of the CINECA supercomputer “Marconi”3 (2 304 nodes). Each node fea-
tures 2 sockets, and each of those sockets is an Intel Xeon Platinum 8160 @ 2.1 GHz (Skylake)
with 96 GB of RAM, 6 memory channels, and 24 cores. Its theoretical memory bandwidth peak

1http://ark.intel.com/products/81705
2Thanks to https://software.intel.com/en-us/qualify-for-free-software/student
3https://www.cineca.it/en/content/marconi

http://ark.intel.com/products/81705
https://software.intel.com/en-us/qualify-for-free-software/student
https://www.cineca.it/en/content/marconi
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icps-gc-6 Marconi A1 Marconi A3
Processor Intel Xeon E5-2650

v3 (Haswell)
Intel Xeon E5-2697

v4 (Broadwell)
Intel Xeon Platinum

8160 (Skylake)
RAM 16 GB 64 GB 96 GB
#mem. channels 2 4 6
Memory bandwidth 34 GB/s 76.8 GB/s 127.99 GB/s
#cores 10 18 24
Clock frequency 2.3 GHz 2.3 GHz 2.1 GHz
Floating-point 736 GFlops/s 1 325 GFlops/s 1 612 GFlops/s

Table 5.1 – Architectural parameters of one socket of our test machines.

is 127.99 GB/s, its theoretical single precision floating-point operation peak is 1 612 GFlops/s.
On this machine, we had access to icc 17.0.4.

Table 5.1 summarizes the architectural parameters of those machines. Because PIC imple-
mentations are memory-bound, the parameter that matters most is the memory bandwidth.

5.2 Related Work and Motivation

A recent paper [83] studied GTC-P performance in details, and points out that: “metrics such
as flop/s or percentage-of-peak are less relevant for the predominantly memory-bound gyrokinetic PIC
methods, as modern architectures require 10 flops per byte moved from DRAM in order to be compute-
limited.” The authors then present a model able to predict execution time based on the amount
of data transfer performed. Data transfers include both inter-node network communication
(15% to 30% of the execution time) and intra-node loads and stores on shared memory (60%
to 80% of the execution time). Intra-node transfers are decomposed between in-cache accesses,
contiguous accesses, and random accesses — the latter being the most costly. In other words,
memory bandwidth is a limiting factor. This study shows that, to improve the performance of
multi-core (intra-node) processing in PIC simulations, we must decrease the amount of costly
memory accesses. Of course, we must do so by preserving the OpenMP-level parallelism as well
as the crucial use of SIMD instructions.

One central aspect in the design of a PIC implementation is how the particles are stored in
the shared memory, and how the particles are assigned to the various threads acting over this
shared memory. In the remainder of this chapter, we will assume that every algorithm uses the
“index plus offset” representation [47, III.E.], see Section 2.2.1.

We organize the following discussion by focusing on three main criteria: strict or non-
strict binning, the representation of particles, and the treatment of data races arising when
two threads push data onto a same target cell.

A common approach, which was the focus of Chapter 4, consists of storing the particles in
a static array, either in an Array of Structures (AoS) fashion or in a Structure of Arrays (SoA)
fashion. Prior work has investigated the benefits of sorting this array by cells, to improve
locality when accessing the electric field and charge arrays [54, 43]. Sorting may be performed
either in between every iteration to maximize locality, or only every so many iterations, so as to
tame the overheads of the sorting process by leveraging the fact that not all particles move to
arbitrary other cells (e.g., [47, 59]). Depending on the option, performance suffers either from
numerous costly random accesses or from suboptimal locality even when efficient, specialized
sorting algorithms are used. As already remarked in the previous chapter, the best frequency
for sorting is not so easy to select: it is both architecture-dependent (due to the relative benefits
of locality) and input-dependent (particles move faster in a “hot” plasma): it is thus also a good
option to choose the frequency of the sorting dynamically [70].

Rather than sorting cell by cell, other algorithms rely on coarse-grained binning [49, 83, 61,
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Sort Update v Update x Accumulate Total
Do not sort 0.0 98.0 64.6 35.9 199.0
Sort every 100 3.6 78.3 64.4 25.6 177.0
Always sort 209.0 66.3 64.2 13.4 353.0

Table 5.2 – Time spent in the different loops (in seconds). Test case: 200 million particles,
128× 128 grid, ∆t = 0.1, 500 iterations. Architecture: Marconi A1.

81, 87]. Particles are organized in super-cells (of size, e.g., 10× 10× 10). This coarse-grained
binning greatly reduces the number of cache misses for the electric field and charge arrays on
the L3 cache level, but still incurs a lot of misses on the L1 and L2 levels since particles are not
sorted by cell inside a super-cell. Various data structures may be used to store particles. For
example, PIConGPU [49] use attribute tiles to store particles on GPU, which are doubly linked
lists of fixed-capacity arrays. This data structure is analogous to our chunks but unlike in our
work, particles in an attribute tile are processed in place. If a particle moves to a different
super-cell, it is migrated to a transfer buffer, and its slot is marked as a hole in an auxiliary
bitmap. Subsequently, holes are filled with particles incoming from neighboring super-cells.
Remaining holes, if any, are filled using particles taken from the end of the attribute tile. In
GTC-P [83], particles that change super-cell are also first updated in place, then migrated to
a different super-cell. In ORB5 [61], particles are sorted by super-cell at each iteration. These
implementations thus also double the memory traffic associated with particles that cross super-
cell boundaries. In contrast, in our algorithm, particles are directly moved to their target bin —
they get moved exactly once per time step.

Going further in terms of sorting, one may try to keep the particles sorted by cell at all times.
In other words, instead of storing particles directly in an array, one stores the particles in nbCells
distinct sets of particles. This approach known as strict binning has three main benefits. Two
of them are shown in Table 5.2: locality is exploited at its best, and it enables the vectorization
of the update-velocities step. A last benefit is that we save 4 bytes per particle as there is no
need to store the cell index. While this approach overcomes several of the aforementioned
limitations, it is nontrivial to implement efficiently: as the table shows, the naive idea to apply
a sorting at each time step is too costly.

“ To be, or not to be, that is the question:
Whether ’tis nobler in the mind to suffer
The slings and arrows of outrageous fortune,
Or to take Arms against a Sea of troubles,
And by opposing end them: to die, to sleep
No more;

W. Shakespeare [201, Act III] ”To sort, or not to sort, that is thus the question; whether ’tis better in efficiency to suffer
from outrageous cache misses, or to take arms against the challenge of the representation of
sets of particles: to write code, to sleep no more. The challenge here lies in the fact that the size
of these sets may vary dynamically as the particles move across the grid.

A first approach is to “hope” that the distribution of particles does not become very unbal-
anced, at least no more than by some constant factor (e.g., 2). Under this assumption, one may
represent each set as a fixed-size array. The resulting representation is an Array of Arrays of
Structures [85, 53]. The arrays have their size fixed at the beginning of the simulation. If, at
some point in the simulation, the number of particles in a given cell exceeds this size, an error
is triggered and the simulation must be interrupted. This approach is thus not very robust.

Efficient, general-purpose implementations of strict binning must cope with dynamically-
sized bins. In the Particle-Particle/Particle-Mesh algorithm [23, Section 8.4.], each set is repre-
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Figure 5.1 – A coloring with 4 colors with 4× 4 tiles of a 24× 16 grid with periodic boundaries.

sented as a linked list. Yet, this data structure lead to tremendous overheads both in terms of
space (to represent list cells) and time (to follow indirections). A textbook data structure for
resizable arrays is the vector. However, vectors suffer from a prohibitive 2x space overhead
and involve costly resize operations. Despite their O(1) amortized cost, those resize operations
induce a significant slowdown in practice. We rewrote our C code to make it compatible with
C++ and compared our chunks to the standard std::vector from C++. Using std::vector in
simulations with an average of 2 288 particles per vector incurred a 50% slowdown compared
to our chunks (without concurrent accesses). Furthermore, we are not aware of a concurrent
vector implementation that would be more efficient that the one we provide for our chunks.

Other researchers have investigated more elaborate dynamic set data structures, combining
arrays with trees, such as the Packed Memory Arrays (PMA) [135, 144]. This structure consists
of a big array containing a fraction of unused cells, called gaps or holes, and that supports dy-
namic rebalancing of these gaps. Yet, dealing with the gaps and rebalancing them increases the
number of memory operations, resulting in poorer performance. Furthermore, the paralleliza-
tion scheme proposed for PMA [12, Chapter 5] incurs additional overheads, as the structure
then needs to be scanned twice.

Nakashima et al. [72] propose a data structure that we view as a parallelism-friendly version
of PMAs. To tame the frequency of rebalancing operations, the authors introduce thread-local
overflow buffers. Yet, this approach suffers from two important limitations. First, as particles
move, maintaining the variable-size gaps requires costly operations for shifting particles. Sec-
ond, the algorithm, which uses a coloring scheme [65] — see Figures 5.1–5.3 — to avoid data
races, does not handle fast-moving particles well (particles moving more than a couple cells away
at a given time step): it resorts to sequential processing for these particles4.

These two limitations are exacerbated when the percentage of crossing particles (particles

4The percentage of fast-moving particles heavily depends on the simulation.
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Figure 5.2 – Tiles of a same color are processed in parallel. If particles stay in their initial tile or
move at most 2 cells from it, no data race can occur when particles move to their new cell.
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Figure 5.3 – Special care is required for particles that move further away (drawn in white): two
distinct threads might process particles that move in the same cell, and data races can occur.
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Figure 5.4 – Chunk bag data structure: chunks of size 10, particles stored in grey cells.

changing cells at each time step) increases, to the point of possibly becoming a major bottleneck.
For example, in a parallel execution using 64 threads, having as little as 0.5% of fast-moving
particles can result in a 32% slowdown on the total execution time due to the sequential pro-
cessing of these particles5. In contrast, we are able to integrate the processing of these particles
within the main parallel loop.

5.3 Overview

We propose an algorithm implementing strict-binning for the PIC method that addresses the
limitations mentioned in Section 5.2, while still supporting efficient OpenMP/SIMD paralleliza-
tion of all critical loops. Our algorithm leverages the use of chunk bags, i.e. linked lists of
fixed-capacity arrays, to achieve SIMD-friendly storage of particles with limited memory over-
heads. The idea of this data structure is illustrated in Figure 5.4. Theoretical analysis of this
data structure and comparison with similar ones can be found in [128].

Section 5.4 and Section 5.5 will show two possible implementations of those chunks. In
this chapter, we will denote chunkSize the number of particles that can be stored in one chunk.
We will also denote memoryOf(object) the amount of memory, in bytes, required to store one
particular object6. In particular, we will see that the memory footprint for a chunk is, in both
implementations:

memoryOf(chunk) = 64 + chunkSize ·memoryOf(particle)

For efficiency, chunkSize should enable efficient vectorization (chunkSize is a multiple of 16
for 512-bit registers), and at the same time be large enough to tame the cost of following a
pointer from a chunk to the next (e.g., 128 or 256).

This chapter presents different variants of a novel parallel algorithm for PIC simulations
on multi-core architectures, featuring at the same time: asymptotically-optimal memory con-
sumption, minimal bandwidth usage, competitive constant factors on the execution time, and
excellent scalability.

This algorithm minimizes the amount of memory transfers in the following sense: at each
time step, each particle gets read from and written to memory exactly once. In particular,
no further move or reordering is ever required, regardless of the percentage of fast-moving
particles.

5Let t denote the single-thread execution time. Assume 0.5% of sequential execution, and 99.5% using 64 threads.
The parallel execution time is: 0.005t + 0.995t/64 = 1.32t/64.

6It is the equivalent of the sizeof operator in C, but we wish to avoid confusion between the memory footprint
of a chunk (memoryOf(chunk)) and the number of particles that can be stored in a chunk (chunkSize).
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The memory consumption is asymptotically-optimal in the sense that the particle represen-
tation is minimal, and that in addition to the minimal amount of space required for storing
the particles, the space overhead is constant for a fixed grid (and a fixed hardware for the first
variant). In particular, the space usage does not depend on the number of crossing particles.

“ Le Poète est semblable au prince des nuées
Qui hante la tempête et se rit de l’archer ;
Exilé sur le sol au milieu des huées,
Ses ailes de géant l’empêchent de marcher.7

C. Baudelaire [193, L’albatros] ”Our algorithm enables fast rides in the sky of simulations that need a lot of particles. But,
stranded on the ground of simulations that use only a few particles, its large chunks prevent
it to be efficient. We must therefore acknowledge that our algorithm is efficient when the av-
erage number of particles per cell exceeds a couple hundreds. Although laser-driven particle
acceleration simulations can use as few as 30 particles per cell [49], large-scale, high-precision
simulations may involve hundreds to thousands of particles per cell [85, 47, 59].

Chunk bags can be used privately by one thread, but also support atomic push operations.
This atomic operation reserves a particle slot in a chunk in a thread-safe manner and is used in
practice to handle fast-moving particles within the main parallel loop.

The four variants (hereafter denoted Variant 1, Variant 2, Variant 3 and Variant 4) are sum-
marized in Table 5.3:

• Variant 1, explained in Section 5.4, removes the data races by allocating a chunk bag for
each thread, on each cell.

• Variant 2, explained in Section 5.5, removes most of the data races by using a coloring
scheme. It handles the grid cells with a cubic tiling: as long as particles do not move
further than half a tile away at each time step, no data race is involved. The remaining
data races, associated with fast-moving particles, are handled by allocating one chunk
bag per cell on which threads write with an atomic operation.

• Variant 3, explained in Section 5.5.4, also uses cubic tiles but does not use a coloring
scheme. Instead, it allocates 2d private bags per cell “close” to the borders of each tile
— where d is the spatial dimension —, to cope with the fact that multiple threads might
handle neighboring tiles concurrently. The remaining data races, associated with particles
moving “far” away from a tile, are handled by allocating one chunk bag per cell on which
threads write with an atomic operation. The greater number of chunk bags to handle
involves more indirections and is, in our tests, not better than the previous variant even
if it exhibits 2d more parallelism.

• Variant 4 uses neither tiling nor a coloring scheme, but instead an atomic operation to
update all the particles. It is the variant that allocates the least additional memory, but it
is too naive and incurs too much time overhead because of atomic operations, therefore
it will not be further discussed.

These different variants illustrate possible trade-offs between the number of atomic oper-
ations involved, the memory involved, and the amount of parallelism available. In fact, this
trade-off can be customized at will: more private bags requires more memory but fewer atomic
operations.

7 The Poet, like this monarch of the clouds,
Despising archers, rides the storm elate.
But, stranded on the earth to jeering crowds,
The great wings of the giant baulk his gait. C. Baudelaire (translation by Roy Campbell)
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Variant 1 2 3 4

Maximum number
of parallel tasks

nbCells
1
2d
· nbCells

tileSized

nbCells

tileSized
nbCells

Additional mem-
ory needed

C1 C2 C3 C4

Number of syn-
chronization
points / time step

3 2 + 2d 3 3

Use of atomics Never
For particles that move
further than 1

2 · tileSize
away from their tile

For particles that move
further than borderSize8

away from their tile
Always

Table 5.3 – The four variants of our strict-binning algorithm. In the table, d is the spatial di-
mension, C1 ≈ 2 · nbThreads · nbCells · memoryOf(chunk), C2 ≈ 4 · nbCells · memoryOf(chunk),

C3 ≈ 2 ·
(
(tileSize + 2 · borderSize)d

tileSized
+ 1
)

· nbCells · memoryOf(chunk), and the last constant

C4 ≈ 2 · nbCells ·memoryOf(chunk) — note that C4 < C2 < C3 < C1.

1 struct { float dx , dy; double vx , vy; } particle_2d ;

2 struct chunk { struct chunk* next ; int size;

3 particle_2d array[CHUNK_SIZE ]; } chunk;

4 struct { chunk* front , back; particle * back_end , back_head ; } bag;

Listing 5.1 – Chunk bag of AoS data structure, in 2d.

5.4 Variant 1 of our Strict-Binning Algorithm

This section will explain the details of the first variant of our strict-binning algorithm. Pseudo-
code and results are given in 2d, but can be modified in other dimensions.

5.4.1 The Chunk Bag Data Structure (AoS inside)

Our approach is based on a realization of the sets of particles using a data structure, which we
here refer to as chunk bag. This data structure is an optimized variant of a relatively standard
structure for representing extensible sequences. A chunk bag essentially consists of a linked list
of fixed-capacity arrays, called chunks. Each chunk stores a pointer to the next chunk (possibly
a null pointer), a fixed-capacity array of particles, and a size field. Each bag stores pointers to
its first chunk and to its last chunk from that linked list.

As an optimization, a bag also keeps pointers to the next available location in the array of
the back chunk, and to the location one past the last location inside the back chunk. These
auxiliary pointers save an indirection each time we add a particle to the data structure — such
optimizations are typical for container data structures [152]. As an exception, we do not main-
tain the size field of the back chunk, since it can be deduced from the two auxiliary pointers.
This data structure is illustrated in Figure 5.5, with corresponding code in Listing 5.1.

The bag data structure supports the following operations, whose code is given in Listing 5.2:

• Add: inserts a particle into a bag, with complexity O(1). An insertion may require allo-
cating a new chunk, but the associated overhead is amortized over the size of a chunk.

• Iter: iterates over all the particles in the bag. This operation is almost as efficient as iterat-
ing over a static array. Most importantly, chunks may be deallocated while the iteration

8 borderSize is a parameter of our algorithm that can be set between 0 and 1
2 · tileSize.
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Figure 5.5 – Chunk bag data structure: chunks of size 10, particles stored in grey cells.

over the bag proceeds (line 19 in Figure 5.7). This possibility enables us to perform our
operations as in an out-of-place algorithm, yet without having to pay for the twofold
space overhead associated with out-of-place algorithms.

• Merge: two bags may be merged in-place, with complexity O(1), by concatenating the
two linked lists involved. Importantly, no compaction is involved. In particular, after a
merge, a non-full chunk may appear in the middle of a linked list of chunks, as appears
in Figure 5.6.

• Memory management: since all chunks have the same size, allocation and deallocation
are optimized using free lists, thus avoiding costly and frequent malloc and free calls.
This kind of dynamic storage allocation is a variant of obstack [152]: we are here in the
special case where we do not deallocate the obstack until the end of the program. This
memory management is also called a memory pool. In the more general case where the
objects to manage do not have all the same size, see the algorithms in [25, Section 2.5].

At a given iteration of the simulation, we use one bag per cell from the grid, for storing the
particles in this cell. To prepare for the next iteration, we need to distribute particles to different
bags, which are associated with the next iteration. In order to avoid data races between the
several threads that move the numerous particles, we allocate one bag for each cell and for
each thread. With all these bags at hand, each thread may place the particles that it processes
directly in a bag associated with the destination cell, without having to worry about races with
other threads. Once all particles are distributed in these bags, the algorithm merges, for each
cell, the bags associated with that cell (there are as many such bags as threads). Since each
merge operation takes constant time, as it amounts to an in-place concatenation of two linked
lists, the overall cost of merging all these bags is O(nbThreads× nbCells). In practice, this cost
is small compared to the processing of all the particles. Once the bags are merged, the particles
are readily sorted for the next iteration.

One might worry about the memory overhead associated with the numerous bags involved.
Yet, the total memory footprint of our algorithm is equal to the minimal amount of space re-
quired for representing all the particles, plus a fixed memory overhead of size 2 · nbThreads ·
nbCells ·memoryOf(chunk). For example, in a simulation on a 128x128 grid, with chunks of size
512, executing on 18 cores, the memory overhead is 7.3 GB. This may be significant in abso-
lute terms, nevertheless it is much less than what is required by competing algorithms whose
memory overheads are proportional to the number of particles, e.g., accounting for 50% of the
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Figure 5.6 – Chunk bag data structure: the merge operation. Top: two chunks. Bottom: those
chunks merged.
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1 #define BYTES_PER_CACHE_LINE 64

2 #define INTS_PER_CACHE_LINE (64 / sizeof(int))

3 int[num_threads ][ INTS_PER_CACHE_LINE ] free_index ; // Avoids false sharing

4 #define FREE_INDEX (i) free_index [i][0]

5 unsigned int max_freelist_size = num_particle / CHUNK_SIZE / num_threads ;

6 chunk* free_chunks [num_threads ][ max_freelist_size ];

7
8 // Take a chunk from the free list if possible , else allocate a new one.

9 chunk* chunk_alloc (int thread_id ) {

10 return ( FREE_INDEX (thread_id ) > 0)

11 ? free_chunks [thread_id ][-- FREE_INDEX ( thread_id )];

12 : (chunk*) malloc(sizeof(chunk));

13 }

14
15 // Put the chunk at the end of the freelist if possible , else free it.

16 void chunk_free (chunk* c, int thread_id ) {

17 if (FREE_INDEX (thread_id ) < max_freelist_size )

18 free_chunks [thread_id ][ FREE_INDEX (thread_id )++] = c;

19 else

20 free (c);

21 }

22
23 // Allocate a new chunk and put it at the back of a chunk bag.

24 chunk* new_back_chunk (bag* b, int thread_id ) {

25 chunk* c = chunk_alloc ( thread_id ); // c->size needs not be initialized

26 c->next = (void *)0;

27 b->back = c;

28 b->back_head = &(c->array [0]) ;

29 b->back_end = &(c->array[ CHUNK_SIZE ]);

30 return c;

31 }

32
33 // Initialize a bag (already allocated ) with only one empty chunk.

34 void bag_init (bag* b, int thread_id ) {

35 chunk* c = new_back_chunk (b, thread_id );

36 b->front = c;

37 }

38
39 // Merge other into b; other becomes empty.

40 void bag_append (bag* b, bag* other , int thread_id ) {

41 b->back ->size = CHUNK_SIZE - (b->back_end - b->back_head ); // Pointer

arithmetic .

42 b->back ->next = other ->front;

43 b->back = other ->back ;

44 b->back_end = other ->back_end ;

45 b->back_head = other -> back_head ;

46 bag_init (other , thread_id );

47 }

48
49 // Add p into the last chunk of bag b (allocate a new chunk before if needed).

50 void bag_push (bag* b, particle p, int thread_id ) {

51 if (b-> back_head == b->back_end ) {

52 chunk* old_back = b->back ;

53 chunk* c = new_back_chunk (b, thread_id );

54 old_back ->size = CHUNK_SIZE ;

55 old_back ->next = c;

56 }

57 *(b->back_head ) = p;

58 b->back_head ++;

59 }

Listing 5.2 – 2d chunk operations; chunks data structure in Listing 5.1.
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2d Particle-in-Cell multi-core algorithm Memory usage, in bytes10 Largest N for
64 GB, in billions

Out-of-place periodic sort, AoS [47] 32 · 2 N 0.9
Out-of-place periodic sort, SoA [204] 28 · 2 N 1.0
Always sorted, static arrays [85] ≥ 24 · 1.5 N ≤ 1.6
Always sorted, packed arrays [144, 12] 24 · (1.4 N + M) 1.0 ≤ N ≤ 1.7
In-place periodic sort, AoS [43] 32 · N 1.8
Sort by super-cell each time step, SoA [61] 28 · (N + 0.1 M) 1.8 ≤ N ≤ 2.0
Always sorted by super-cell, frame lists [49]

(
28 + 64

frameSize

)
(N + 0.1 M) 1.8 ≤ N ≤ 2.0

Always sorted, SoA [72] 24 · 1.17 N 2.0
Always sorted, chunk bags (Variant 1)

(
24 + 64

chunkSize

)
· N + C1 2.1

Table 5.4 – Memory usage of 2d PIC implementations. N is the number of particles, M is the
maximum number of particles crossing cell boundaries on one iteration (M can be up to N in
our simulations), and C1 ≈ 2 · nbThreads · nbCells · memoryOf(chunk) is a constant for a given
grid and hardware — we here use a grid of size 128× 128 and a hardware with 18 threads.

total memory usage. Table 5.4 summarizes the memory usage of the algorithms mentioned in
Section 5.2, to compare against our proposal, which, asymptotically, requires a smaller amount
of memory. The last column shows that, for 64 GB of total memory or more, our algorithm is
able to fit a much larger number of particles in memory. We recall that, in 2d, the “index plus
offset” representation requires 28 bytes per particle if stored in an SoA fashion, but 32 bytes per
particle if stored in an AoS fashion, due to necessary padding9. When using the strict-binning
approach, the cell index does not need to be stored, bringing the size requirement down to
24 bytes per particle.

5.4.2 Our Strict-Binning Algorithm

The pseudo-code of our algorithm appears in Figure 5.7. The key ideas have been described
in Section 5.4.1. An important addition is the loop fission that we have applied in order to
exploit the Single Instruction on Multiple Data (SIMD) feature: lines 11 and 13 we have two
loops instead of only one loop on the particles of a chunk. Particles update their velocity by
interpolating the value of the electric field at their position. Since the interpolation formula is
the same for all particles from a same cell, it may be implemented using vectorized instructions.
To that end, we isolated the velocity update operations (line 12). As long as the data from one
chunk fits into the L1 cache, this does not increase the number of accesses to higher cache
levels (nor to the main memory). Otherwise, an additional level of tiling can be applied. In
our tests with L1 cache size equal to 32 KB, chunk sizes between 128 and 512 leads to the best
performance, see Figure 5.8 and Figure 5.9. We see on those figures that there is a limit on the
chunk size: when it is too big, there is not enough memory to store the chunks (a chunk size
of 4096 is too big on icps-gc-6 on 10 threads and a chunk size of 1024 is too big on Marconi A1
on 18 threads). When we have enough memory, bigger chunk sizes lead to L2 cache accesses
— slower than L1 cache accesses — and smaller chunk sizes lead to frequent irregular memory
accesses, which explains the shape of those histograms.

We note that the use of chunks can be seen as strip-mining the main loop: in each cell, lines

9Even though the particle data fits on 28 bytes, padding for the remaining 4 bytes is required for double values
to be aligned. In some implementations, those remaining 4 bytes may be used for the particle weight.

10In [85], the factor 1.5 allows each cell to contain up to 50% more particles than the average; above that threshold,
the simulation must be interrupted. In [144], the factor 1.4 comes from the fact that 40% of the array is reserved
for unused cells (holes). In [72], the factor 1.17 similarly corresponds to 6% unused cells and overflow buffers. In
[49] and [61], the factor 0.1 is the expected fraction of particles leaving supercells. In our work, the term 64

chunkSize

accounts for the size of the fields next and size of each chunk (we here use frameSize = chunkSize = 512).
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1 bag particles[0..nbCells−1]; // Particles by cell, at current time step
2 bag particlesNext[0..nbThreads−1][0..nbCells−1];
3 double ρ[0..ncx][0..ncy], E[0..ncx][0..ncy];
4 double ρNext[0..nbThreads−1][0..nbCells−1][0..3]; // 4 corners per cell
5 Foreach time step
6 Set in parallel // OpenMP parallel
7 particlesNext[0..nbThreads−1][0..nbCells−1] to empty, using an empty chunk
8 ρNext[0..nbThreads−1][0..nbCells−1][0..3] and ρ[0..ncx][0..ncy] to zero
9 Parallel Foreach idCell in [0..nbCells−1] // OpenMP parallel

10 Read E[x][y], foreach (x, y) among the 4 corners of cell idCell
11 Foreach chunk in particles[idCell]
12 Foreach particle in that chunk // SIMD vectorized
13 Update particle velocity
14 Foreach particle in that chunk
15 Update particle position
16 Compute idCellNext, the index of the cell containing the particle
17 Add the particle into particlesNext[currentThreadId][idCellNext]
18 Accumulate its charge into ρNext[currentThreadId][idCellNext][0..3]
19 Deallocate that chunk
20 Parallel Foreach idCell in [0..nbCells−1] // OpenMP parallel
21 Set particles[idCell] to particlesNext[0][idCell]
22 For idThread in [1..nbThreads−1]
23 Merge particlesNext[idThread][idCell] into particles[idCell]
24 For idThread in [0..nbThreads−1], For i in [0..3]
25 ρ[x][y] += ρNext[idThread][idCell][i], where (x, y) is i−th corner of cell idCell
26 Compute E from ρ using a Poisson solver // FFTW

Figure 5.7 – Variant 1 of our algorithm for the 2d PIC method on multi-core architectures.

9 and 11 feature a loop over the chunks then, nested, a loop over the particles in that chunk,
instead of just a loop over all the particles in the cell. This technique is thus comparable to
the strip-mining technique shown in Section 4.5.3. We showed in this previous section that a
strip size between 64 and 256 gave similar optimal results, and here we show that a chunk size
between 128 and 512 give similar optimal results. The reason for that difference is that with
chunks, we have only one electric field value to read for all the particles in a given cell (line 10),
whereas in the previous approach, we had as many electric field values to read as the number
of different cells in which particles of a common strip would be scattered, thus filling the cache
with those different values.

To summarize, our algorithm has three key features:

• First, at each step, each particle is read from and written into the main memory exactly
once (read on line 13, still in cache for lines 15–18, and write on line 17). Thus, our
algorithm does not perform unnecessary accesses to the main memory.

• Second, each time step involves only three synchronization points: one at the end of each
parallel loop (lines 6, 9, and 20).

• Third, thanks to the use of thread-indexed data structures for ρ and for particlesNext, we
avoid data races and do not need atomic operations. Note that for ρ, this can be done
automatically with the pragma reduction(+:rho[0:nbCells][0:4]) from OpenMP 4.5.

With this pseudo-code in mind, we can now prove our upper bound C1 on the number of
additional chunks needed.

Theorem 1. For a test case with N particles, a grid size of nbCells, an architecture with nbThreads
threads and a chunk size of chunkSize, the Variant 1 of our algorithm uses, for the particles, a memory
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(in bytes) which is given by

memoryOf(chunk) ·
⌈

N

chunkSize

⌉

+ C1

where C1 = memoryOf(chunk) · nbThreads · (2 · nbCells + 1) + 32 · nbCells · (nbThreads + 1).

Proof. Each bag structure weighs 32 bytes (four pointers, see Listing 5.1). We have one bag
per grid cell in the particles variable, and one bag per grid cell per thread in the particlesNext
variable. The total memory for the bag structure is 32 · nbCells · (nbThreads + 1).

Now let us look at the chunks inside those bags. We recall that N is the total number
of particles, nbCells the number of cells, nbThreads the number of threads and chunkSize the
number of particles that can be stored in a chunk. We additionally denote by:

• Ncurrent the number of particles still in the variable particles
• Nnext the number of particles already in the variable particlesNext
• Ccurrent the number of chunks still in the variable particles
• Cnext the number of chunks already in the variable particlesNext

We want to show that Ccurrent + Cnext ≤
⌈

N
chunkSize

⌉
+ nbThreads · (2 · nbCells + 1). To that

end, we use the fact that at any point in the simulation, Ncurrent + Nnext = N. A particle is either
still in particles, either it has already been processed and is now in particlesNext. We now look
at the number of chunks:

• first, notice that in the Cnext chunks already in the variable particlesNext, there are at most
nbCells · nbThreads non-full chunks (when a thread adds a particle in a bag, it uses the last
chunk of this bag until it is full, thus only the last chunk can be non-full, see bag_push in
Listing 5.2). The other (full) chunks contain chunkSize particles. We obtain:

chunkSize · (Cnext− nbThreads · nbCells) ≤ Nnext

• then, notice that in the Ccurrent chunks still in the variable particles, there are at most
nbThreads · (nbCells + 1) non-full chunks (the chunk which is being processed by each
thread, and the non-full chunks coming from the previous iteration when merging bags,
see the previous point). The other (full) chunks contain chunkSize particles. This gives us:

chunkSize · (Ccurrent− nbThreads · (nbCells+ 1)) ≤ Ncurrent
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Summing up those two inequalities, we get:

chunkSize · (Ccurrent + Cnext− nbThreads · (2 · nbCells + 1)) ≤ Ncurrent + Nnext = N

which gives

Ccurrent + Cnext ≤
N

chunkSize
+ nbThreads · (2 · nbCells + 1)

≤
⌈

N

chunkSize

⌉

+ nbThreads · (2 · nbCells + 1)

Whatever happens during a simulation, a total number of chunks of
⌈

N
chunkSize

⌉
+ nbThreads ·

(2 · nbCells + 1) is thus enough.

Application: On 18 cores with a 2d simulation where memoryOf(particle) = 24 and a grid
size of 128× 128, it leads to 7.3 GB of auxiliary memory. See Table 5.4 to put this in perspective.

5.4.3 Performance Results

Our experiments were conducted on the A1 partition of the Marconi supercomputer (see Ta-
ble 5.1), on which we were granted the use of 64 nodes with 2 sockets each. Each socket is
an Intel Xeon E5-2697 v4 @2.3 GHz (Broadwell), with 64 GB of RAM, 4 memory channels, and
18 cores. Our C code was compiled using Intel C Compiler 17.0.1, using the FFTW3 library [149]
for the Poisson solver, and storing 512 particles per chunk.

We ran simulations on two classical test cases [5, 23] and checked that they matched the ex-
pected mathematical results, see details in Section 7.1. We used periodic boundary conditions,
and the following initial distributions:
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Two-stream instability

One important challenge faced by prior work is that performance significantly depends on
the percentage of particles crossing cell boundaries at each time step. In contrast, the perfor-
mance of our algorithm should, by design, not depend so much on the percentage of crossing
particles. To empirically verify this claim, we increased particle velocities by a factor 100 (rais-
ing vth from 0.01 to 1.0). For Landau damping, this increased the percentage of crossing parti-
cles from 1.8% to 87%, but increased execution time by only 4.64%. For two-stream instability,
this increased the percentage of crossing particles from 12% to 98%, but increased execution
time by only 4.59%.

The next experiments all use the Landau damping test case with vth = 1.0, summarized in
Table 5.511.

Figure 5.10 reports a strong scaling for our algorithm, and compares it our prior work using
SoA shown in Section 4.4, carefully optimized for the same architecture. Although the SoA
algorithm is slightly faster when using 4 cores or less, our chunk algorithm, which puts less
pressure on the memory bus, outperforms it for more cores. With 18 cores, the chunk algorithm
is 36% faster and is able to update 861 million particles per second. Equivalently, one thread
is able to process one particle at one time step in no more than 48 cycles, all inclusive. Note
that this experiment simulates 900 million particles, which is the maximum that out-of-place
sorting can accommodate with 64 GB, whereas our algorithm could handle more than twice as
many particles, see Table 5.4.

11It is the same test case as in Table 4.3 in Chapter 4.
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Physical test case Linear Landau damping [5, Section 5.15], initial distribution

f (x, y, vx , vy, t = 0) =
(
1 + 0.01 cos

(
x
2

)
cos

( y
2

)) 1
2π exp

(

− v2
x+v2

y

2

)

Spatial grid [0; 4π)2 decomposed in 1282 cells, periodic boundaries
Particle shape factor Cloud-in-cell model [42]
Number of iterations 100
Time step 0.1
Particle crossing:
averaged, per iteration

58% of the particles move 1 cell away, 25% move 2 cells away,
3.4% move 3 cells away, 0.18% move further away

Table 5.5 – 2d test case.
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An analysis of those results in the roofline model, shown in Figure 5.11, allows us to un-
derstand why our previous SoA implementation cannot scale better on 18 threads: it almost
reached the maximum memory bandwidth. We thus understand how precious is an algorithm
which incurs less memory accesses. As a side note, let us nevertheless acknowledge that the
SoA implementation was run without the strip-mining technique discussed in Section 4.5.3
(which we did not implement at the time of those experiments). The Marconi A1 partition is
now no more available to allow comparison with this implementation on this architecture, but
we will show a detailed comparison on other architectures in Chapter 8.

Figure 5.12 shows the memory bandwidth of our implementation when performing a weak
scaling. We take as reference the Stream benchmark [162], which aims at evaluating the max-
imal bandwidth that can be reached in practice. The Stream benchmark reaches 63.4 GB/s,
which corresponds to 83% of the theoretical peak of our hardware (76.8 GB/s). On 18 cores,
our algorithm reaches more than 65% of the reference memory bandwidth. Since our algorithm
does not perform unnecessary accesses to the main memory, we conclude that our implemen-
tation is not far from exploiting the machine at its best.

Figure 5.13 reports on the performance of hybrid parallelism, with a weak scaling of our
implementation on 128 sockets (2 304 cores), using one MPI process per socket, and 18 OpenMP

threads per socket, i.e. one thread per core. The results show an almost perfect scaling, with
only 8% overhead when scaling from 1 to 128 sockets. This overhead is expected, due to
the (logarithmic) communication costs involved in the MPI_ALLREDUCE communication, as we
used particle decomposition to parallelize our implementation on distributed memory, see Sec-
tion 2.6. This experiment demonstrates the efficiency of our parallel algorithm at the scale of
230 billion particles.
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1 struct { float dx , dy , dz; double vx , vy , vz; } particle_3d ;

2 struct chunk { struct chunk* next ; int size;

3 particle_3d array[CHUNK_SIZE ]; } chunk;

4 struct { chunk* front , back; particle * back_end , back_head ; } bag;

Listing 5.3 – Chunk bag of AoS data structure, in 3d.

1 // Strict - binning with chunk bags of SoA (linked -lists of fixed -size arrays).

2 // Total number of chunks: depends on implementation .

3 // CHUNK_SIZE is an architecture -dependent parameter (depends on cache size ).

4 #define CHUNK_SIZE 128

5 // VEC_ALIGN is architecture dependent , e.g. 32 with 256- bits vectors (AVX2 ).

6 // _Alignas (VEC_ALIGN ) (c11) can be safely replaced with __attribute__ (( aligned (

VEC_ALIGN ))) (gcc 2.95.3).

7 struct chunk { struct chunk* next ; int size; // 0 <= size <= CHUNK_SIZE

8 _Alignas (VEC_ALIGN ) float dx[CHUNK_SIZE ];

9 _Alignas (VEC_ALIGN ) float dy[CHUNK_SIZE ];

10 _Alignas (VEC_ALIGN ) float dz[CHUNK_SIZE ];

11 _Alignas (VEC_ALIGN ) double vx[CHUNK_SIZE ];

12 _Alignas (VEC_ALIGN ) double vy[CHUNK_SIZE ];

13 _Alignas (VEC_ALIGN ) double vz[CHUNK_SIZE ]; } chunk;

14 struct { chunk* front , back; } bag; // linked list of chunks

15 bag* particle_sets [ncx * ncy * ncz];

Listing 5.4 – Chunk bag of SoA data structure, in 3d.

5.5 Variant 2 of our Strict-Binning Algorithm

This section will detail the second variant of our strict-binning algorithm. The code used for
this section is available in the figshare repository [206] (“Best Artifact Award” at Euro-Par 2018).

5.5.1 The Chunk Bag Data Structure (SoA inside)

In 2d, using AoS or SoA for the chunks uses the same memory because there is no padding
in the particle_2d structure of Listing 5.1. In 3d, using AoS as described in Listing 5.3 would
incur a 4-byte padding in the particle_3d structure. It is thus more efficient to use SoA. Bench-
marking of our algorithm reveals that this SoA layout, which enables better vectorization, im-
proves performance compared to the AoS layout — an observation consistent with the findings
of Nakashima et al. [72]. It is thus the best layout, both for memory usage and for execution
time.

With a SoA layout, it is not efficient to use the auxiliary pointers back_end and back_head as
used in the AoS layout of Listings 5.1 and 5.3. Indeed, with SoA we would need one back_head
pointer for each of the six arrays, plus one back_head pointer (for any of those six arrays). It is
thus more efficient to update the size field each time we add a particle in the chunk. Moreover,
by updating this field at all times, it is possible to efficiently implement a thread-safe atomic
insertion operation, which is one of the new features of this section.

The memory layout we use for the particles is summarized on Listing 5.4, and an example is
given in Figure 5.14. As in Section 5.4, chunk bags support O(1) insertion of a particle (adding
a fresh chunk if needed), O(1) merge of two bags thanks to the back field (note that chunk com-
paction is not needed), see Figure 5.15, and O(n) iteration over the contents, all with excellent
constant factors.

Furthermore, unlike chunks introduced in the previous section, these ones are devised to
support a thread-safe atomic insertion operation. Atomic insertions are central to the handling
of fast-moving particles, as detailed further on. We implement atomic insertion using a fetch-
and-add instruction to atomically reserve a slot in the chunk where to push the particle. In an
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Figure 5.14 – Chunk bag data structure: chunks of size 10, particles stored in grey cells.

atomic insertion, if a thread attempts to reserve the one-past-the-end slot, it acquires respon-
sibility to extend the bag with a fresh chunk, in which case it sets the next pointer of the fresh
chunk to the current front pointer of the bag, and sets the front pointer of the bag to the address
of the fresh chunk12. The C code of this atomic insertion is given in Listing 5.5. We can note that
in Listing 5.2 we inserted new particles in the last chunk, and here we insert in the first chunk.
Both options can be used.

When processing a chunk of particles, the algorithm first updates velocities and positions,
then migrates the particles to different chunks, depending on the cell associated with their new
position. Once all particles from the chunk are processed, the chunk is stored into a (per-thread)
free list, so as to be subsequently reused to extend a bag whose last chunk becomes full. Our
algorithm preserves the following invariant: at the beginning of a time step, all the particles are
stored in at most

⌈
N

chunkSize

⌉
+ 2 · nbCells chunks, where N denotes the total number of particles,

and chunkSize denotes the number of particles per chunk.
To dispatch particles according to their target cells, we associate two bags with each cell: a

private bag, accessed at most by one thread at a time; and a shared bag, accessed concurrently,
to handle fast-moving particles. To initialize these two bags, we need an additional 2 · nbCells
empty chunks. In total, we need

⌈
N

chunkSize

⌉
+ 4 · nbCells chunks. We proved that this number of

chunk suffices at any point of a simulation, regardless of how particles move. Thus, the space
used by our algorithm, in addition to the minimal amount of memory needed to represent the
particles, grows in proportion with 4 · nbCells ·memoryOf(chunk)13.

Table 5.6 summarizes the memory usage of the algorithms mentioned in Section 5.2, to
compare against our proposal, which, asymptotically, requires a smaller amount of memory.
The last column shows that, for 96 GB of total memory or more, our algorithm is able to fit
a much larger number of particles in memory. We recall that, in 3d, the “index plus offset”
representation requires 40 bytes per particle. When using the strict-binning approach, the cell
index does not need to be stored, leading to 36 bytes per particle. We note that this table uses
chunkSize = 128; it would not even be possible to use chunkSize = 256 with the approach from
the previous section: all the memory would be used for the additional chunks.

12Assigning the front pointer can be implemented with a non-atomic write, as long as it is preceded by a memory
fence, to ensure preservation of the order of write operations.

13Although we proved a tight bound on the number of chunks used, in practice, we allocate some extra chunks
per thread, to give some slack and avoid the need for dynamic load balancing of free chunks. Note that it is quite
unlikely for one of these additional chunks to ever be required: due to the presence of partially-filled chunks at the
end of each source bag, threads free source chunks at a slightly faster rate than they fill target chunks.
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1 // Allocate a new chunk and put it at the front of a chunk bag.

2 // Two atomic writes to ensure the order of operations , so that other threads

3 // read the correct c->size on line 30 after reading b->front on line 45.

4 void add_front_chunk (bag* b, int thread_id ) {

5 chunk* c = chunk_alloc ( thread_id ); // See Listing 5.2.

6 #pragma omp atomic write

7 c->size = 0;

8 c->next = b->front;

9 #pragma omp atomic write

10 b->front = c;

11 }

12
13 // Guarantee that *p is read atomically . Adapted from Example atomic .2.c in

14 // https://www.openmp.org/wp-content/uploads/openmp-examples-4.5.0.pdf

15 chunk* atomic_read (chunk** p) {

16 chunk* value;

17 #pragma omp atomic read

18 value = *p;

19 return value;

20 }

21
22 // Add p into the first chunk of bag b (allocate a new chunk after if needed).

23 // Adapted from Example atomic .3.c also in openmp -examples -4.5.0. pdf.

24 void bag_push_concurrent (bag* b, float dx , float dy , float dz , double vx , double

vy , double vz , int thread_id ) {

25 chunk* c;

26 int index;

27 while (true ) { // Until success.

28 c = b->front;

29 #pragma omp atomic capture

30 index = c->size ++;

31 if (index < CHUNK_SIZE ) { // The chunk is not full , we write the particle .

32 c->dx[index] = dx; c->dy[index] = dy; c->dz[index] = dz;

33 c->vx[index] = vx; c->vy[index] = vy; c->vz[index] = vz;

34 if (index == CHUNK_SIZE - 1) // The chunk is now full , we extend the bag.

35 add_front_chunk (b, thread_id );

36 return;

37 } else {

38 // The chunk is full : another thread has just pushed a particle in it

39 // and is now extending the bag. First , we cancel our additional

40 // "c->size ++" (c->size = CHUNK_SIZE is more efficient than c->size --).

41 #pragma omp atomic write

42 c->size = CHUNK_SIZE ;

43 // Then , we wait until the bag is extended . The atomic_read forces the

44 // thread to read in the main memory , and not in its temporary view .

45 while (atomic_read (&b->front) == c) {}

46 }

47 }

48 }

49
50 // Add p into the first chunk of bag b (allocate a new chunk after if needed).

51 void bag_push_serial (bag* b, float dx , float dy , float dz , double vx , double vy ,

double vz , int thread_id ) {

52 chunk* c = b->front;

53 int index = c->size ++;

54 c->dx[index] = dx; c->dy[index] = dy; c->dz[index] = dz;

55 c->vx[index] = vx; c->vy[index] = vy; c->vz[index] = vz;

56 if (index == CHUNK_SIZE - 1) // The chunk is now full , we extend the bag.

57 add_front_chunk (b, thread_id );

58 }

Listing 5.5 – 3d chunk atomic insertion operation; chunks data structure in Listing 5.4.

https://www.openmp.org/wp-content/uploads/openmp-examples-4.5.0.pdf
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3d Particle-in-Cell multi-core algorithm Memory usage, in bytes15 Largest N for
96 GB, in billions

Always sorted, chunk bags (Variant 1)
(
36 + 64

chunkSize

)
· N + C1 0.9

Out-of-place periodic sort [47, 203] 40 · 2 N 1.1
Always sorted, static arrays [85] ≥ 36 · 1.5 N ≤ 1.6
Always sorted, packed arrays [144, 12] 36 · (1.4 N + M) 1.0 ≤ N ≤ 1.7
Sort by super-cell each time step, SoA [61] 40 · (N + 0.2 M) 1.8 ≤ N ≤ 2.1
Always sorted by super-cell, frame lists [49]

(
40 + 64

frameSize

)
(N + 0.2 M) 1.8 ≤ N ≤ 2.1

Always sorted, SoA [72] 36 · 1.17 N 2.1
In-place periodic sort, AoS [43] 40 · N 2.2
Always sorted, chunk bags (Variant 2)

(
36 + 64

chunkSize

)
· N + C2 2.3

Table 5.6 – Memory usage of 3d PIC implementations. N is the number of particles, M is the
maximum number of particles crossing cell boundaries on one iteration (M can be up to N in
our simulations), and C2 ≈ 4 · nbCells ·memoryOf(chunk) is a constant for a given grid, enhanced
from C1 ≈ 2 · nbThreads · nbCells ·memoryOf(chunk) — we here use a grid of size 64× 64× 64
and a hardware with 24 threads.

5.5.2 Our Strict-Binning Algorithm

In order to maximize the number of insertions into private bags while preserving a high de-
gree of OpenMP parallelism, we follow the coloring scheme proposed by Kong et al. [65], and
generalized from 2d to 3d by Nakashima et al. [72]. The idea is to fill the space with tiles, of
size 2× 2× 2 (or more), in a regular manner. Tiles are colored using 8 different colors in such
a way that two adjacent tiles have distinct colors. At each of the 8 color phases, 1

8 of the tiles
are processed, in parallel by nbThreads threads14. Because cells processed in parallel by distinct
threads are at least 2 cells away from each other, all the particles that move, at a given time
step, no more than one cell away (no more than half a tile away, in general) can be pushed into
private bags, in a thread-safe manner.

The pseudo-code of our algorithm appears in Figure 5.16. Particles from a same cell are
processed sequentially by a same thread. To benefit from SIMD performance, we apply loop
fission on the particle loop over each chunk, making the assumption that one chunk fits into the
L1 cache. Otherwise, an additional level of tiling can be applied. First, the algorithm updates
velocities (line 12). Second, it computes the new positions (line 14), introducing an auxiliary
array for storing the new cell indices. Third, it sequentially pushes each particle into the chunk
associated with its target cell. If the target cell lies in the current tile, or lies in the closer half of
an immediate neighboring tile, a non-atomic insertion is performed on a private bag (line 19).
Otherwise, an atomic insertion is performed on a shared bag (line 21). Note that the boolean
condition involved can be evaluated using a simple arithmetic test.

Once all the particles are processed, the algorithm merges, for each cell, its private bag with
its shared bag (line 27). No chunk compaction is performed at this point; as a result, the bag
associated with one cell may contain up to 2 non-full chunks (corresponding to the head chunk
of the private bag and that of the shared bag). Thus, there are at most

⌈
N

chunkSize

⌉
+ 2 · nbCells

nonempty chunks at the beginning of the next time step. It follows that at least 2 · nbCells empty
chunks must have been freed during the current time step. This number corresponds exactly

14For a 2× 2× 2 tiling, at the i-th coloring phase, the algorithm processes cells whose coordinates satisfy: ((x/2)
mod 2) + 2 · ((y/2) mod 2) + 4 · ((z/2) mod 2) = i. Using larger tiles is possible. It may slightly reduce the num-
ber of accesses in shared bags, however it greatly reduces the number of tiles that can be processed independently
in parallel at each phase. For example, a 4× 4× 4 tiling divides the number of tiles by 8, and might thus result in
increased idle time. Using tiles of size 1× 1× 1 is also possible, but requires 27 colors.

15Remarks in footnote 10 on page 110 apply, except that the expected fraction of particles leaving supercells is 0.2
in 3d, and that we here use frameSize = chunkSize = 128.
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1 bag particles[0..nbCells−1]; // Particles by cell, at current time step
2 bag particlesNextPrivate[0..nbCells−1], particlesNextShared[0..nbCells−1];
3 double ρ[0..ncx][0..ncy][0..ncz], E[0..ncx][0..ncy][0..ncz];
4 double ρNext[0..nbThreads−1][0..nbCells−1][0..7]; // 8 corners per cell
5 Foreach time step
6 Foreach color in [0..7] // 8 coloring phases
7 Parallel Foreach tile of that color // OpenMP parallel
8 Foreach cell idCell in that tile
9 Read E[x][y][z], foreach (x, y, z) among the 8 corners of cell idCell

10 Foreach chunk in particles[idCell]
11 Foreach particle in that chunk // SIMD vectorized
12 Update particle velocity
13 Foreach particle in that chunk // SIMD vectorized
14 Update particle position
15 Compute idCellNext, the index of the cell containing the particle
16 Foreach particle in that chunk
17 If the particle moves inside its tile
18 Or it moves to the closer half of a neighbor tile
19 Add the particle into particlesNextPrivate[idCellNext]
20 Else
21 Atomically add the particle into particlesNextShared[idCellNext]
22 Add its charge into ρNext[currentThreadId][idCellNext][..] // SIMD
23 Put a pointer to that chunk into the freelist of the current thread
24 Compute the cumulative sum of the free lists sizes
25 Parallel Foreach idCell in [0..nbCells−1] // OpenMP parallel
26 Set particles[idCell] to particlesNextPrivate[idCell]
27 Merge particlesNextShared[idCell] into particles[idCell]
28 Set particlesNextPrivate[idCell] to empty, using an empty chunk
29 Set particlesNextShared[idCell] to empty, using an empty chunk
30 Parallel Foreach (x, y, z) in [0..ncx]x[0..ncy]x[0..ncz] // OpenMP parallel, collapsed
31 Foreach of the 8 pairs (idCell,i) such that (x,y,z) is i−th corner of idCell
32 Foreach idThread in [0..nbThreads−1]
33 ρ[x][y][z] += ρNext[idThread][idCell][i]
34 ρNext[idThread][idCell][i] = 0
35 Compute E from ρ using a Poisson solver and set ρ to 0 // FFTW + OpenMP

Figure 5.16 – Variant 2 of our algorithm for the 3d PIC method on multi-core architectures.

to the number of chunks needed to initialize the private and the shared bags for the next time
step. Our algorithm performs this initialization efficiently in parallel (using a prefix sum array,
based on the sizes of the per-thread free lists).

With this pseudo-code in mind, we can now prove our upper bound C2 on the number of
additional chunks needed.

Theorem 2. For a test case with N particles, a grid size of nbCells, an architecture with nbThreads
threads and a chunk size of chunkSize, the Variant 2 of our algorithm uses, for the particles, a memory
(in bytes) which is given by

memoryOf(chunk) ·
⌈

N

chunkSize

⌉

+ C2

where C2 = memoryOf(chunk) · (4 · nbCells + nbThreads) + 48 · nbCells.

Proof. Each bag structure weighs 16 bytes (two pointers, see Listing 5.4). We have one bag per
grid cell in the particles variable, one bag per grid cell in the particlesNextPrivate variable, and
one bag per grid cell in the particlesNextShared variable. The total memory for the bag structure
is 48 · nbCells.

Now let us look at the chunks inside those bags. We recall that N is the total number
of particles, nbCells the number of cells, nbThreads the number of threads and chunkSize the
number of particles that can be stored in a chunk. We additionally denote by:
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• Ncurrent the number of particles still in the variable particles
• Nnext the number of particles already in the variables particlesNext{Private, Shared}
• Ccurrent the number of chunks still in the variable particles
• Cnext the number of chunks already in the variables particlesNext{Private, Shared}

We want to show that Ccurrent + Cnext ≤
⌈

N
chunkSize

⌉
+ 4 · nbCells + nbThreads. To that end,

we use the fact that at any point in the simulation, Ncurrent + Nnext = N. A particle is ei-
ther still in particles, either it has already been processed and is now in particlesNextPrivate or
particlesNextShared. We now look at the number of chunks:

• first, notice that in the Cnext chunks already in the variables particlesNext{Private, Shared},
there are at most 2 · nbCells non-full chunks (when a thread adds a particle in a bag, it
uses the last chunk of this bag until it is full, thus only the last chunk can be non-full,
see bag_push_concurrent and bag_push_serial in Listing 5.5). The other (full) chunks
contain chunkSize particles. We obtain:

chunkSize · (Cnext− 2 · nbCells) ≤ Nnext

• then, notice that in the Ccurrent chunks still in the variable particles, there are at most
nbThreads+ 2 ·nbCells non-full chunks (the chunk which is being processed by each thread,
and the non-full chunks coming from the previous iteration when merging bags, see the
previous point). The other (full) chunks contain chunkSize particles. This gives us:

chunkSize · (Ccurrent− nbThreads− 2 · nbCells) ≤ Ncurrent

Summing up those two inequalities, we get:

chunkSize · (Ccurrent + Cnext− nbThreads− 4 · nbCells) ≤ Ncurrent + Nnext = N

which gives

Ccurrent + Cnext ≤
N

chunkSize
+ nbThreads + 4 · nbCells

≤
⌈

N

chunkSize

⌉

+ nbThreads + 4 · nbCells

Whatever happens during a simulation, a total number of chunks of
⌈

N
chunkSize

⌉
+ 4 ·nbCells+

nbThreads is thus enough.

We next describe the treatment of the charge density and the electric field (ρ and E).When
processing particles from one cell, the algorithm first reads from memory the values of the
electric field on the 8 corners of that cell (line 9). Importantly, thanks to the strict-binning
approach, this data needs only to be loaded once from memory. As particles are processed
and moved to their target cells, the charge of each particle is accumulated (line 22) into the
array ρNext, which, at the end of the time step, is used to update E for the next iteration. We
exploit a recently-proposed, ingenious technique allowing to accumulate the charge on the
8 corners using SIMD instructions [87]. Concretely, the array ρNext involves some amount of
redundancy: for each cell, 8 values are stored adjacently in memory, describing the charge on
the 8 corners of that cell. At the end of a time step, the charge at a grid point is computed by
summing the values associated with the 8 cells that have this grid point as one of their corners
(line 33).

We considered two different possibilities for updating ρNext. The first possibility is to de-
compose ρNext into a private array and a shared array, just like we do for bags of particles. In this
approach, only the deposit of the charge of fast-moving particles triggers atomic operations; for
all others particles, we can use SIMD operations. The second possibility is to decompose ρNext
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into nbThreads arrays. In this approach, each thread has exclusive access to its charge array, so
all accesses use SIMD operations. The downside is a slight increase in the memory footprint,
and in the time needed to sum up the values. However, under our assumption of a reasonably
large number of particles per cell, these additional costs in memory and in time are tiny in front
of the gains. Thus, we opted for the latter approach.

Under the assumption of (at least) hundreds of particles per cell in average, the operations
for manipulating chunks (following pointers, pushing/popping in free lists) and for manipu-
lating per-cell information are all well amortized. Overall, the kernel of our algorithm is not far
from optimal in terms of memory transfers.

Optimization when particles move at most one cell per time step. For simulations whose
physical parameters ensure that movement is restricted to immediate neighboring cells (e.g., [47,
59]), we can optimize our algorithm by removing the shared bags altogether. In this case, our
algorithm requires only

⌈
N

chunkSize

⌉
+ 2 · nbCells + nbThreads chunks, and does not need any

atomic insertion operation. Likewise, ρNext can be stored in a single array (indexed by cells
and by corners).

5.5.3 Performance Results

To assess correctness and performance of our implementation, we considered two classical
test cases: a 3d Landau-damping simulation and a 2d3v electron hole simulation. Section 7.1
presents details on these experiments, and argues that the numerical results produced by our
simulation match the expected results. In the remaining of this section, we discuss performance
results.

Our experiments were conducted on the A3 partition of the Marconi supercomputer (see
Table 5.1), on which we were granted the use of 64 nodes with 2 sockets each. Each socket is an
Intel Xeon Platinum 8160 @ 2.1 GHz (Skylake), with 96 GB of RAM, 6 memory channels, and
24 cores. Our C code was compiled using Intel C Compiler 17.0.4, and the FFTW3 library [149]
for the Poisson solver.

The algorithm depends on two parameters. First, we use tiles of size 2× 2× 2 for the color-
ing. Tiles of size 4× 4× 4 lead to similarly good performance. Using larger cubic tiles of side
TILE_SIZE degrades performance, especially when NUMBER_CELLS ≡ 1 mod TILE_SIZE
(where NUMBER_CELLS ∈ {ncx, ncy, ncz}), which leads to tiny tiles of size 1 that cause too
much imbalance. Second, we use chunkSize = 256 for the chunk capacity. Larger values
of chunkSize increase the space usage and do not reduce the execution time. Smaller values
of chunkSize increase the execution time overheads: +12% for chunkSize = 128, and +52%
for chunkSize = 64. Note that, for chunkSize = 256, the memory “slack”, which is equal to
4 · nbCells · memoryOf(chunk), represents in the Landau-damping simulation only 13% of the
amount of memory strictly required for representing the particles.

In summary, for simulations with sufficient particle density, there exists values of chunkSize,
such as 256, that suffice to properly amortize the cost of following pointers indirections between
chunks, and at the same time allow fitting close to the maximal number of particles that the
hardware can possibly accommodate — in other words, allowing to implement a strict-binning
algorithm that achieves both time and space efficiency.

Achieved throughput. For the end-user of a simulation, the metric that matters is the number
of particles processed per second. Our implementation achieves:

• 740 million particles per second (30.8 million per second per core) in the 3d Landau-
damping simulation, where 31% of the particles change cell at each iteration;

• 910 million particles per second (37.9 million per second per core) in the 2d3v electron
hole simulation, where 32% of the particles change cell at each iteration.
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Analysis in the roofline performance model. As argued in Section 5.5.2, our algorithm per-
forms not far from the minimal number of memory operations — a key feature for PIC sim-
ulations hit by the memory bandwidth bottleneck. With this property in mind, it is interest-
ing to compare the memory bandwidth achieved by our algorithm against the capacity of the
hardware. Consider the Landau-damping simulation. The memory bandwidth achieved is
53.6 GB/s16. The theoretical peak advertised by the manufacturer is 127.99 GB/s. The Stream
benchmark [162], which aims at evaluating the practical peak using a few microbenchmark pro-
grams, and which is commonly used as a baseline, provides the measure 98.2 GB/s. Our al-
gorithm thus achieves 42% of the theoretical peak and 55% of the practical peak bandwidth.
Reaching higher percentage in a PIC simulation appears to be very challenging.

“ I could only run the experiments on a lower-performance node than what is
presented in the paper, however, memory bandwidth results are consistent with
what reported in the paper, as my experiment reached [...] 52% of the available
bandwidth.

Anonymous referee, reviewing the artifacts from our last article [205, Section 3] ”The code and scripts for reproducing our bandwidth measurements on other architectures
are available in [206]. Let us note that the scripts provided do not allow hyper-threading,
although we noticed that it is beneficial, see Chapter 8.

Our algorithm is memory bound. In general, an algorithm may be compute bound (i.e. lim-
ited by the number of floating-point operations per second) or memory bound (i.e. limited by
the number of bytes per second transfered from main memory) depending on its operational
intensity, defined as the number of operations performed divided by the number of bytes
moved from or to the main memory. We computed the operational intensity of the 3d im-
plementation by counting the number of floating point operations per particle (79 operations
in single-precision and 65 in double-precision, which leads to 209 operations when normalized
to single-precision), and counting the number of bytes used to represent a particle (36 bytes,
plus 0.25 byte to account for chunk headers)17. We thus derive that our 3d implementation has
an operational intensity equal to 209/(2 · 36.25) ≈ 2.9. Similarly, we computed the operational
intensity for the 2d3v implementation to be 114/(2 · 32.25) ≈ 1.8.

Figure 5.17 represents the bounds on computation and memory bandwidth, in a chart
showing the operational intensity on the x-axis, and the computation performance on the y-
axis [180]. Note that both axes are log-scale. The computation bound is an horizontal line, at
1 612 GFlops/s (billion floating-point operations per second), a figure provided by the hard-
ware manufacturer. The theoretical and practical memory bounds (bytes/s) are diagonal lines,
because the bound in performance (flop/s) is equal to the operational intensity (flop/byte)
multiplied by the memory bandwidth (bytes/s). Each diagonal line meets the horizontal line
at the point of break-even between memory bound and compute bound.

Efficient processing of fast-moving particles. In addition to being memory efficient, our al-
gorithm also benefits from another key feature not found in prior strict-binning algorithms:
fast-moving particles are handled efficiently within the main parallel loop. For a particle mov-
ing more than half a tile away, we require only one extra atomic operation. Moreover, the
contention associated with this atomic operation is relatively limited. Indeed, for two atomic
operations to be issued on the same memory cell at the “same time” (i.e., close enough in time

16The bandwidth is obtained by multiplying the size of a particle (36 bytes, plus 64
chunkSize

bytes to account for
chunk headers) by the number of particles processed per second (740 million), and by a factor 2 (one read plus one
write). Comparisons with other implementations are shown in Section 3.3.

17Counting the number of bytes moved per particle simply as the size of a particle is correct because all particles
are read from and written to the main memory at each iteration; there is essentially no cache reuse for particle data
between iterations.
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Figure 5.17 – Analysis of performance in the roofline model. Landau damping 3d3v test case
in (7.4) and (7.5). 2d3v electron hole test case in (7.6) and (7.7). Variant 2 in Table 5.3.

for a race on the cache line to occur), it must be the case that two particles taken from two dis-
tinct tiles spaced away by at least one full tile are moving towards the same cell of a third tile,
at the “same time”. Thus, the performance of our algorithm should be relatively independent
form the particle velocities.

To empirically evaluate the impact of fast-moving particles, we consider a simulation in
which we artificially varied the initial distribution of particle velocities. To that end, we man-
ually tuned these distributions in such a way as to obtain several test cases with increasing
number of fast-moving particles. Each test case is reflected by a column from Table 5.7. More
specifically, the three first rows show the percentage of particles that move away from 1, 2 or
3 cells from their current grid cell at each time step (no particle move further away). Initial
particle velocities in these experiments follow the sum of two Gaussian distributions, like in
the bump-on-tail instability. Initial particle positions are taken uniformly in [0; 4 π)3. More
precisely, the initial distribution function for each row is given by the following formula and
values of parameters (see [206] to easily reproduce the results):

f0(x, vx, vy, vz) = g(vx) · g(vy) · g(vz),

with g(w) = 1√
2 π vth

(

pdrift exp
(

− (w−vdrift)
2

2v2
th

)

+ (1− pdrift) exp
(

− w2

2v2
th

))

.
(5.1)

• Row 1: pdrift = 0. ; vdrift = 0.; vth = 0.339
• Row 2: pdrift = 0.02; vdrift = 11.; vth = 0.126
• Row 3: pdrift = 0.02; vdrift = 13.; vth = 0.178
• Row 4: pdrift = 0.02; vdrift = 15.; vth = 0.234
• Row 5: pdrift = 0.02; vdrift = 17.; vth = 0.287
• Row 6: pdrift = 0.02; vdrift = 20.; vth = 0.355
• Row 7: pdrift = 0.02; vdrift = 22.; vth = 0.3585
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Particles that move 1 cell away 8.0% 8.0% 8.0% 8.0% 8.0% 8.0% 8.0%
Particles that move 2 cells away 0 0.7% 1.9% 3.1% 4.3% 5.6% 4.4%
Particles that move 3 cells away 0 0 0 0 0 0.2% 1.4%
Particles pushed atomically (line 21) 0.0% 0.4% 1.0% 1.6% 2.2% 3.1% 3.7%
Slowdown w.r.t. first column 0 0.0% 0.9% 3.8% 4.4% 4.2% 7.0%

Table 5.7 – Impact on performance of increasing the percentage of fast particles. 3d3v test case
in (5.1). Variant 2 in Table 5.3.

By instrumenting the code, we measured the number of push operations that trigger an
atomic write (line 21 from Figure 5.16). These numbers, relative to the total number of particles,
appear in the fourth line of the table: they vary from 0% to 3.7%. The last row of Table 5.7 gives
the corresponding slowdown on the total execution time. Figures show that even when the
percentage of particles whose move require an atomic operation is as high as 3.7%, the cost
of processing these fast moving particles remains fairly limited: +7.0%. In comparison, any
alternative algorithm that sequentially processes 3.7% of the particles in a 24-core execution
would suffer at least from a +85% slowdown compared with a fully-parallel implementation18.

Scaling. Although inter-node parallelism is mostly orthogonal to the focus of the present work,
we used particle decomposition (see Section 2.6) to scale our algorithm on 128 Skylake sockets
(each with 24 cores, 12.3 TB of RAM in total), using one MPI process per socket. We simulated
Landau-damping with 256 billion particles, achieving a throughput of 89.6 billion particles per
second: a 123x speedup with respect to one socket.

Technical note on the coloring scheme. Most of the time, this note can be forgotten, if you have
full control over the grid size. However, we are never too careful, and having a code which is
valid in every scenario is somehow a good practice.

When NUMBER_CELLS is not an even multiple of TILE_SIZE (where NUMBER_CELLS ∈
{ncx, ncy, ncz}), then the tiles at the borders of the concerned direction (or the ones just before
the borders, depending on the case) cannot use as much private bags as written in Figure 5.16.
In most cases, it will be possible to modify slightly the grid sizes so that this does not happen.
For example, if you have tiles of size 5 and in one dimension the number of cells is 128, setting
the number of cells to 130 is probably the best solution. To the best of our knowledge, previous
works with the coloring scheme all implicitly use grid sizes that are even multiples of the tile
size and do not discuss this corner case. Let us nevertheless explain what is the problem and
how we can solve it.

Figures 5.18–5.20 show a non-perfect tiling. For the green tiles, there is no problem: as
before, borders of width ⌊5/2⌋ = 2 can be used on the full grid. When processing the blue
tiles, however, special care is needed. The x-axis starts with the blue color and ends with the
blue color. For this axis, it is mandatory to use atomics whenever we leave the tile for the first
and last tile. The y-axis ends with a pink tile, but it is too small to enable a border of size 2
for the top and bottom tile. We here chose to use atomics whenever we leave the tile on this
direction, too (note that we could have used borders of size 1 for the top of the top tile or for
the bottom of the bottom tile, a choice we did not make to keep the symmetry).

As a final remark, we notice on the drawing that we could also choose to have a border of
size 3 for half of the tiles on which to use private bags. We did not choose that for the sake of
symmetry.

18Let t denote the single-core execution time. Assume 3.7% of sequential execution, and 96.3% using 24 cores.
The parallel execution time is: 0.037t + 0.963t/24 = 1.85t/24.
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Figure 5.18 – A coloring with 4 colors with 5× 5 tiles of a 24× 16 grid with periodic boundaries.
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Figure 5.19 – Green tiles can be processed in parallel as in Figures 5.1–5.3: atomics are only
needed for particles that move further than half a tile size away (2 cells) from their tile.
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Figure 5.20 – Blue tiles need special care. Here we chose to use atomics whenever we leave the
tile on directions where we cannot use half a tile size (2 cells) for borders.

5.5.4 Variant 3 of our Algorithm, Without Coloring

We previously showed results using a coloring scheme. In addition to that, we also developed
another algorithm which uses a little more memory but avoids the need to color the tiles, thus
saving 7 synchronization points. For simulations involving a large number of particles per cell
(thousands or more), an alternative algorithm might deliver improved performance. The idea
is to allocate, for each cell, 1 shared bag and a number of private bags equal to the number of
tiles that can overlap on this cell (up to 2 in 1d, up to 4 in 2d, up to 8 in 3d). Two parameters
can be set: the size of the tiles, and the size of the borders on which tiles can overlap (which
has to be at most equal to half the tile size). Figure 5.21 shows an example with 4× 4 tiles and
a border of 1. The average number of private bags per cell is thus 62

42 = 2.25. On the figure, we
have shown, for one particular tile, the number of private bags that are used in each cell. The
cells on corners are at the intersection of 4 “tiles plus borders”: they need 4 private bags. The
cells on edges, but not on corners, are at the intersection of 2 “tiles plus borders”. The cells on
the interior are only inside one tile19. If we use 4× 4 tiles and a border of 2, this time all the
cells would need 4 private bags.

In this implementation, all the tiles can be processed in parallel, which can be much more
efficient on architectures with a lot of threads (we exhibit 8 times more parallelism than with
the coloring scheme). For example, with a grid size of 64× 64× 64 and a tile size of 4× 4× 4,
we have 4 096 tiles in total. With a coloring scheme, it means that for each color, only 512 tiles
can be processed in parallel. This is enough work as long as the number of threads do not
exceed 50 (a good rule of thumb is that when the number of tasks is less than 10 times the
number of threads, we cannot exploit all the parallelism possible due to, e.g., load imbalance).

19Which leads to an equivalent computation for the average number of bags per cell:
4 · 4 + 8 · 2 + 4 · 1

42 = 2.25.
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Figure 5.21 – A tiling with 4× 4 tiles and borders of 1 of a 24× 16 grid with periodic boundaries.
All the tiles can be processed in parallel. Atomics are needed when particles move more than 1
cell away from their tile. In other cases, green tiles use the bag with identifier 0, red tiles use the
bag with identifier 1, blue tiles use the bag with identifier 2 and yellow tiles use the bag with
identifier 3. The numbers inside cells on the figure indicate the number of different private
bags that are needed.
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1 // i{x,y,z}_min is the index of the first cell of the tile on the {x,y,z}-axis

2 (( ix_min % (2 * TILE_SIZE )) != 0) + 2 * (( iy_min % (2 * TILE_SIZE )) != 0) + 4 *

(( iz_min % (2 * TILE_SIZE )) != 0)

Listing 5.6 – Computation of the private bag identifier of a tile.

1 int idSharedBag = 8;
2 bag particles[0..nbCells−1]; // Particles by cell, at current time step
3 bag particlesNext[0..8][0..nbCells-1]; // 0..7 for private bags, and 8 for the shared bag.
4 double ρ[0..ncx][0..ncy][0..ncz], E[0..ncx][0..ncy][0..ncz];
5 double ρNext[0..nbThreads−1][0..nbCells−1][0..7]; // 8 corners per cell
6 Foreach time step
7 Parallel Foreach tile // OpenMP parallel
8 Compute idPrivateBag for that tile // See Listing 5.6
9 Foreach cell idCell in that tile

10 Read E[x][y][z], foreach (x, y, z) among the 8 corners of cell idCell
11 Foreach chunk in particles[idCell]
12 Foreach particle in that chunk // SIMD vectorized
13 Update particle velocity
14 Foreach particle in that chunk // SIMD vectorized
15 Update particle position
16 Compute idCellNext, the index of the cell containing the particle
17 Foreach particle in that chunk
18 If the particle moves inside its tile
19 Or it moves no further than borderSize cells from its tile
20 Add the particle into particlesNext[idPrivateBag][idCellNext]
21 Else
22 Atomically add the particle into particlesNext[idSharedBag][idCellNext]
23 Add its charge into ρNext[currentThreadId][idCellNext][..] // SIMD
24 Put a pointer to that chunk into the freelist of the current thread
25 Compute the cumulative sum of the free lists sizes
26 Parallel Foreach idCell in [0..nbCells−1] // OpenMP parallel
27 Set particles[idCell] to particlesNext[idSharedBag][idCell]
28 Set particlesNext[idSharedBag][idCell] to empty, using an empty chunk
29 For idBag in [0..7]
30 Merge particlesNext[idBag][idCell] into particles[idCell]
31 Set particlesNext[idBag][idCell] to empty, using an empty chunk
32 Parallel Foreach (x, y, z) in [0..ncx]x[0..ncy]x[0..ncz] // OpenMP parallel, collapsed
33 Foreach of the 8 pairs (idCell,i) such that (x,y,z) is i−th corner of idCell
34 Foreach idThread in [0..nbThreads−1]
35 ρ[x][y][z] += ρNext[idThread][idCell][i]
36 ρNext[idThread][idCell][i] = 0
37 Compute E from ρ using a Poisson solver and set ρ to 0 // FFTW + OpenMP

Figure 5.22 – Variant 3 of our algorithm for the 3d PIC method on multi-core architectures.
Changes from Variant 2 in Figure 5.16 are in red.

When using, e.g., Intel KNL with 68 cores that support up to 4 threads per core (272 thread in
total), we believe that this alternative algorithm could help.

The pseudo-code of this alternative algorithm is given in Figure 5.22. When processing
a tile, each thread begins by computing the identifier of the private bag it can use, at line 8,
by the formula in Listing 5.6. In fact this computation is just a bijection between the 8 colors
of the coloring scheme and {0, . . . 7} — any alternative bijection would also work. The same
restrictions on the borders that applied to the coloring scheme also apply here when the tiling
is not perfect — see the previous technical note on the coloring scheme.

This alternative algorithm uses more memory: instead of having just two bags per cell for
the variable particlesNext, it can have up to 9 bags per cell. On Marconi A3, the extra memory
was not a problem (we could fit 2.1 billions particles with this alternative algorithm), but the
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fact that we have more bags per cell implies that the chunks are less filled, thus we lose more
time in indirections. As said in the introduction of this subsection, this algorithm is expected
to be superior to the coloring scheme only with a lot of particles per cell and a lot of threads.
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Chapter 6

The Semi-Lagrangian Method in 2d
with Domain Decomposition

During this thesis, another contribution was the implementation and optimization of the semi-
Lagrangian (SL) method in 2d, using domain decomposition. In this chapter, we will first
explain what is the semi-Lagrangian method in Section 6.1, then we will explain our design
choices and optimization steps. Parts of what is explained in this chapter was presented in a
minisymposium of PASC’171.

The baseline of our implementation is a previous work in 2d from several colleagues [93].
This baseline, written in Fortran inside the library SeLaLib [183], is described in Section 6.2.
We first extracted the useful parts from this library and ported them to C.

Section 6.3 describes the architectures on which the optimizations were tested and explains
the new parallelization strategies that we designed and implemented, in MPI. Throughout this
chapter, we will denote by P the number of MPI processes used for simulations. This section
also describes optimizations that could be tested, for future work.

Finally, Section 6.4 concludes the work shown in this chapter.

6.1 Preliminaries to the Semi-Lagrangian Methods

6.1.1 Additional Grid

Semi-Lagrangian methods need to store f values on a grid (as opposed to have particles, e.g.,
in the Particle-in-Cell method). Because f depends on both #„x and #„v , we need a grid of the
phase-space for it (for E and ρ we need only a spatial grid). We saw different ways of dealing
with the spatial grid in Section 1.2.2. For the velocities, it is different. There is no physical
reason to consider periodicity; there is no reason neither to think that the interval of velocities
to consider will be easy to retrieve at each time step. But this does not mean that we need a
grid for all the possible values in R: we have at least one hard constraint which is the speed of
light limitation. A natural idea is thus to mimic the “free boundaries”:

• we choose “appropriate” vmin and vmax (we “forget” values outside [vmin; vmax])

• we choose a “small” ∆v and store ncvx =
vmax − vmin

∆v
different values on the vx-axis

• for each time step, we only store f values on the grid

1Y. Barsamian, and M. Mehrenberger. “Semi-Lagrangian Simulations for Solving 2d2v Vlasov–Poisson Systems
(one and two species)”. In: Platform for Advanced Scientific Computing (PASC), Minisymposium “Kinetic Simulations on
HPC Platforms for Plasma Physics Applications (3/3): Parallelization and New Hardware”. 2017.

Slides: http://www.barsamian.am/Slides/slides_2017-06-27.pdf.

http://www.barsamian.am/Slides/slides_2017-06-27.pdf
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Remark: in total, there are ncx × ncvx different values of f stored for a 1d1v implementa-
tion, ncx× ncy× ncvx× ncvy in 2d2v, or ncx× ncy× ncz× ncvx× ncvy× ncvz in 3d3v2.

6.1.2 Splitting

Semi-Lagrangian methods use a splitting method, and the characteristic curves to solve each
split equation. In [94], Cheng and Knorr present a way to split the Vlasov–Poisson system (1.5)
that has to be solved at each time step, that we recall here:
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into two easier systems that have each to be solved for different sub-steps:
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These systems are easier to solve, because
∂g

∂t
+ a

∂g

∂x
= 0 is a movement called advection. If a

is a constant, it is really simple: when t moves, g retains the same values, translated, as shown
in Figure 6.1.

x

g(x, 0)

x

g(x, T)

a T

Figure 6.1 – Advection
∂g

∂t
+ a

∂g

∂x
= 0.

In other words, g is constant along a well-chosen curve — the characteristic curve whose
equation is g(x(0) + a t, t) = g(x(0), 0). During each sub-step where we solve system (6.1),
we indeed have a constant advection coefficient ( #„v does not depend on t nor on #„x ). During
each sub-step where we solve system (6.2), we also have a constant advection coefficient be-
cause with this splitting,

#„

E is constant in time during this sub-step3. We advect f along the
characteristics given in the system (1.7), which we also give here:







d #„x

dt
= #„v

d #„v

dt
=

q

m

#„

E

There are many ways to arrange the advections on #„x and on #„v : we are looking for one that
gives as little error as possible. Cheng and Knorr present a scheme that is second order in ∆t
(i.e. the error is no more than a constant times ∆t2): the Strang splitting [173]4. Higher-order

2ncx, ncy and ncz being the number of points for the spatial grid, as in Section 2.2.1.
3If we had the full electromagnetic force and not just the electric part as here, we would have to take additional

care for the splitting — e.g., by further splitting the system on each of the velocities directions to have constant
advection coefficients.

4Solving (6.1) for half a time step, then solving (6.2) for a full time step, and (6.1) for half a time step.
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Parameters
ncx× ncy: size of the spatial grid.
ncvx× ncvy: size of the velocities grid.
∆t: time step.
S: number of iterations.
f0: initial distribution function.
q and m: particle charge and mass.

Variables
f [ncx][ncy][ncvx][ncvy]: distribution function.
ρ[ncx][ncy]: charge density.
E[ncx][ncy]: electric field.

Algorithm
1 Initialize f following f0
2 For i from 1 to S Strang splitting

3 Advection of f on #„x for 1
2 ∆t

∂ f
∂t +

#„v · ∇ #„x f = 0
4 Compute ρ from f Integration in #„v

5 Compute E from ρ Poisson solver

6 Advection of f on #„v for ∆t
∂ f
∂t +

q
m

#„

E · ∇ #„v f = 0

7 Advection of f on #„x for 1
2 ∆t

∂ f
∂t +

#„v · ∇ #„x f = 0

Figure 6.2 – High-level description of the Semi-Lagrangian method.

1 Initialize f following f0

1.5 Advection of f on #„x for 1
2 ∆t

∂ f
∂t +

#„v · ∇ #„x f = 0
2 For i from 1 to S−1
4 Compute ρ from f Integration in #„v
5 Compute E from ρ Poisson solver
6 Advection of f on #„v for ∆t

∂ f
∂t +

q
m

#„

E · ∇ #„v f = 0
7 Advection of f on #„x for ∆t

∂ f
∂t +

#„v · ∇ #„x f = 0
8 Compute ρ from f Integration in #„v
9 Compute E from ρ Poisson solver
10 Advection of f on #„v for ∆t

∂ f
∂t +

q
m

#„

E · ∇ #„v f = 0
11 Advection of f on #„x for 1

2 ∆t
∂ f
∂t +

#„v · ∇ #„x f = 0

Figure 6.3 – SL pseudo-code, half-advections merged (modifications from Figure 6.2 in red).

splittings exist, e.g., the 6th order splitting of Blanes and Moan [137], or splittings obtained
by the triple jump technique [19, Section II.4], or high-order splittings specific to the Vlasov–
Poisson system [93]. During each time step of the semi-Lagrangian scheme, there is thus either
an advection on #„x or an advection on #„v , whose precise coefficients depend on the splitting.

“ Finally we notice that the horizontal shifting (6.1) by half a time step may be
connected with the subsequent horizontal shifting of the next time step. In effect a
horizontal and a vertical shifting, by one step each, alternate.

C. Z. Cheng & G. Knorr [94] ”The pseudo-code for a Strang splitting is shown in Figure 6.2. As remarked in the quote
from [94], let us just note that when we do not need the simulation values at each iteration,
we can merge the two advections lines 3 and 7: two advections, one after the other, on #„x are
equivalent to only one advection. This optimization is shown in Figure 6.3.

6.1.3 Details of an Advection

Let us now focus on advections. Without loss of generality, we can focus on an advection on
#„x , and suppose that we know, for a particular sub-step, how to compute

#  „

∆x such that we have
to evaluate:

f ( #„x , #„v , after sub-step) = f
(

#„x − #  „

∆x, #„v , before sub-step
)

The general scheme to apply to retrieve this value is given in Figure 6.4. At each sub-step,
we have to compute the values of f on the grid. But we then have to solve a problem that
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Values before advection. Values after advection.

x

y

x

y

f ( #„x , #„v , after)

f ( #„x − #  „

∆x, #„v , before)

Step 1. Advection (look back in time).

Values before advection.

x

y
f ( #„x − #  „

∆x, #„v , before)

Step 2. Interpolation from stored values.

Figure 6.4 – Semi-Lagrangian framework. A value on the grid after the sub-step is equal to
a value not necessarily on the grid before the sub-step. This value is interpolated from the
neighboring grid values.

comes from the finite numbers of values of f stored: when #„x is on the grid, #„x − #  „

∆x might not
be on it. This is done by interpolating, as shown in step 2 of Figure 6.4. On this figure, we
made a simple interpolation that only takes two points in each direction. This would lead to
too much error. In practice, we use for example a Lagrangian interpolation of a higher degree.
The pseudo-code for the advection and interpolation on #„x is shown in Figure 6.5.

More details on the semi-Lagrangian method can be found e.g., in [28, Deuxième partie]
or [103].

6.2 Baseline SeLaLib Implementation

6.2.1 Parallelization Strategy: Transposition

To explain how to parallelize an advection, let us still consider an advection on #„x , and a sim-
ulation where we have 26 = 64 points per direction: because we work on a 2d2v phase space
( #„x = (x, y) and #„v = (vx, vy)), it means we have 224 = 16 777 216 points in total.

The parallel strategy stems from [91, Section 3] and [95]. During the advection on #„x , all
the computations can be made in parallel, provided that the needed values are available on the
process. The idea for parallelization is simple: because we advect on #„x , we only need other
values on the position axes, not on the velocity axes. So, we will split the array on the velocity
directions, and each process will have in memory a portion of the full array that will be enough
for his computation. Thus, the two outermost loops (lines 1–2 on Figure 6.5) are split among
the P processes.

The advection on #„v is treated in a similar fashion: this time, the memory has to be split
on the position directions. Hence, another efficient parallel algorithm is needed to go from
one memory representation (split in #„v ) to the other (split in #„x ). This change in memory is a
transposition of the f array. Figure 6.6 gives an example of this transposition for P = 4 processes.
The picture is in 2d but we recall that the f array is 4d.

This change in memory is made by MPI communications. The parallel pseudo-code for
advection is changed as shown in Figure 6.7. In the example given on Figure 6.6, the process 0
would have k_min = 0, k_max = 31, l_min = 0, l_max = 31, the process 1 would have k_min =
0, k_max = 31, l_min = 32, l_max = 63, etc.
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Parameters
real f [0..ncx− 1][0..ncy− 1][0..ncvx− 1][0..ncvy− 1]: the repartition function (before advection).
integer degree, the degree of the interpolation.

Output
real new_ f [0..ncx− 1][0..ncy− 1][0..ncvx− 1][0..ncvy− 1]: the repartition function (after advection).

Algorithm
1 For k from 0 to ncvx− 1
2 For l from 0 to ncvy− 1
3 Compute the displacement (dx , dy) and the interpolation coefficients coe f f .
4 For i from 0 to ncx− 1
5 For j from 0 to ncy− 1
6 new_ f [i][j][k][l]← interpolate(coe f f , i− ⌊dx⌋, j− ⌊dy⌋, k, l)

real interpolate(real coe f f [−degree..degree][−degree..degree], integer i, integer j, integer k, integer l)
i value← 0
ii For a from −degree to +degree
iii For b from−degree to +degree
iv value← value + coe f f [a][b]× f [(i + a) mod ncx][(j + b) mod ncy][k][l]
v return value

Figure 6.5 – Advection on #„x pseudo-code.

• process 0 has f [00..63][00..63][00..31][00..31]
• process 1 has f [00..63][00..63][00..31][32..63]
• process 2 has f [00..63][00..63][32..63][00..31]
• process 3 has f [00..63][00..63][32..63][32..63]

• process 0 has f [00..31][00..31][00..63][00..63]
• process 1 has f [00..31][32..63][00..63][00..63]
• process 2 has f [32..63][00..31][00..63][00..63]
• process 3 has f [32..63][32..63][00..63][00..63]

f split in v.x

v

f split in x.x

v

Figure 6.6 – Transposition: change in process memory with a 644 grid and P = 4 processes.

0 k_min, k_max, l_min, l_max ← local_MPI_indices()
1 For k from k_min to k_max
2 For l from l_min to l_max
3 Compute the displacement (dx, dy) and the interpolation coefficients coe f f .
4 For i from 0 to ncx− 1
5 For j from 0 to ncy− 1
6 new_ f [i][j][k][l]← interpolate(coe f f , i− ⌊dx⌋, j− ⌊dy⌋, k, l)

Figure 6.7 – Parallel advection on #„x pseudo-code (modifications from Figure 6.5 in red).
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x

v

• process 0 has f [00..31][00..63][00..31][00..63]
• process 1 has f [00..31][00..63][32..63][00..63]
• process 2 has f [32..63][00..63][00..31][00..63]
• process 3 has f [32..63][00..63][32..63][00..63]

Figure 6.8 – Domain decomposition with a 644 grid and 4 processes.

6.2.2 Other Implementation Choices

The Poisson solver that computes E from ρ uses a Fourier Transform. As discussed in Sec-
tion 2.4, in practice this is really fast, so this computation is done redundantly by the P pro-
cesses. Hence, each process needs to have the full E, thus the full ρ: it has to be broadcast just
after an advection on x.

The two-dimensional advections are split again leading to one-dimensional advections;
this does not introduce additional errors since it concerns linear advection for which this sub-
splitting is exact.

The one-dimensional interpolations are performed using high-order Lagrange polynomials
(e.g., of order 17).

6.3 A New Domain-Decomposition Implementation

The domain decomposition [96] is another parallel strategy for semi-Lagrangian implementa-
tions. The 4d domain is split among the P processes into regular hyper-rectangles, as pictured
on Figure 6.8. We will here only consider regular decompositions. The ncx values of x, the ncy
values of y, the ncvx values of vx and the ncvy values of vy are each decomposed into P1/4

intervals. The i-th process is in charge of a sub-domain denoted as:

[x[i][0]; x[i][1]] × [y[i][0]; y[i][1]] × [vx[i][0]; vx[i][1]] × [vy[i][0]; vy[i][1]].

This method has been implemented in various recent works, e.g., [97, 98, 102, 100]. These
implementations all share a common drawback: they require assumptions over the number
of cells per sub-domain and/or over the time step, to ensure that communications are only
done with the neighboring sub-domain (or at most two consecutive sub-domains in the flow
direction in the case of [97]).

In [98], it is reported that this constraint is so restrictive that transposition is preferred over
domain decomposition. However, in [100, Section 3], it is reported that the constraint |α| ≤ q

2 ∆x
(where α is the displacement, q the degree of the Lagrange interpolation and ∆x the cell size) is
rather manageable, and that this strategy is more efficient than the transposition strategy.

The algorithm we sketch in this chapter gets rid of all assumptions, and is shown to be
efficient. It makes use of the MPI 3.0 asynchronous data exchanges.

6.3.1 Naive Domain Decomposition Implementation

Figure 6.9 is a pseudo-code of the original transposition strategy. It is essentially a refined
version from Figure 6.5, using the fact that in practice, the 2d advection is split into two 1d
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Local variable:
buffer[max(ncx, ncy)].

Algorithm:
0 Transpose f (Figure 6.6) Now f[full][full][local][local]
1 Foreach vx
2 Foreach vy
3 Compute the displacement on the x-axis
4 Foreach y
5 buffer← f[:][y][vx][vy]
6 Foreach x
7 Interpolate on the x-axis from buffer
8 Compute the displacement on the y-axis
9 Foreach x
10 buffer← f[x][:][vx][vy]
11 Foreach y
12 Interpolate on the y-axis from buffer

Figure 6.9 – Transposition.

Local variable:
buffer[max(ncx, ncy) + Lagrange degree].

Algorithm:
Recall that f[local][local][local][local]

1 Foreach vx
2 Foreach vy
3 Compute the displacement on the x-axis
4 Foreach y
5 Communicate the needed points
6 Foreach x
7 Interpolate on the x-axis from buffer
8 Compute the displacement on the y-axis
9 Foreach x
10 Communicate the needed points
11 Foreach y
12 Interpolate on the y-axis from buffer

Figure 6.10 – Domain Decomposition: v1.

advections. It allows to explain how the domain decomposition strategy shown in Figure 6.10
has been derived from this original transposition strategy.

As reported in the previous section, the algorithm has no constraint on the displacement
whatsoever. This means that there must be some magic operating behind “Communicate the
needed points” (lines 5 and 10 of Figure 6.10). Indeed, there are some technical details behind
these communications.

Let us focus on the communication line 5 (the one line 10 is similar). At line 5, we need
values from other processes, but we know that those values are on processes whose inter-
vals for y, vx and vy in the decomposition are the same. We might have a lot of ISend/IRecv
to execute, but not among all the processes — which would lead to O

(
P2
)

ISend and IRecv
—, only among processes that have common intervals for y, vx and vy — which leads to

O
((

P1/4
)2
)

= O
(√

P
)

ISend and IRecv.
Even with this property in mind, the communication could still be time-consuming. Maybe

do we need a global communication among these O
(√

P
)

processes in order to tell each pro-
cess which values to send to which process? In fact, we do not need it. For all processes needing
to communicate, the displacement computed line 3 is the same. It is just the velocity vx multi-
plied by the time step ∆t. Thus, each process not only knows to which other process he has to
ask values. . . but already to which other processes he has to send values:

• the process in charge of the value x must ask values to processes that are in charge of
the values in the range [x + vx · ∆t − d; x + vx · ∆t + d + 1], where d is the degree of the
Lagrange interpolation.

• conversely, for each value x, if a process is in charge of a value in the range [x + vx · ∆t−
d; x + vx · ∆t + d + 1], then it has to send values to the process in charge of x

The algorithm for the data exchange is thus given in Figure 6.11.
There is one last subtlety if we want to handle all the possible cases. As we have seen, the i-

th process that handles the values [x[i][0]; x[i][1]] needs the values [x[i][0] + vx · ∆t− d; x[i][1] +
vx · ∆t + d + 1]. A special case might happen if the number of values needed is greater than
ncx (which will happen if we have not enough processes and the x values have not been split
into multiple intervals: if we look back at Figure 6.8, this happens for the y values). In that
case, each process has to send multiple times its values to the same process. This is handled
by having a different identifier for each communication, and by having loops lines 4 and 9 in
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1 Foreach process index i_recv on the x communicator (processes that share the same y, vx and vy intervals)
2 Compute the index i_send_ f irst of the process that has x[i_recv][0] + vx · ∆t− d
3 Compute the index i_send_last of the process that has x[i_recv][1] + vx · ∆t + d + 1
4 For i_send from i_send_ f irst to i_send_last
5 If my_index = i_send and my_index , i_recv, then
6 Mark the need for a send to i_recv
7 Launch an ISend to i_recv
8 If my_index = i_recv, then
9 For i_send from i_send_ f irst to i_send_last
10 Mark the need for a receive from i_send
11 If my_index , i_send, then
12 Launch an IRecv from i_send
13 If there is a need for a receive from my_index, then
14 Remove the need for a receive from my_index
15 Make a local copy of the needed values
16 Wait for completion of the launched ISend/ IRecv

Figure 6.11 – Communication algorithm for lines 5 and 10 of Figure 6.10. A given process looks
from the point of view of each process, to see if it needs to send data to that process. When it is
looking from its own point of view, he also sees from which processes he needs to receive data.

Figure 6.11 be indexed in practice not on the process identifier but on the number of f values
to send. As a consequence, it is possible to handle any number of communications between the
same couple of processes.

6.3.2 First Communication Optimization

As we have seen, we were able to mimic the algorithm with transposition, by introducing some
communications allowing to make copies inside the buffer useful for interpolation.

But when P grows, those communications will involve really small messages. For each
communication, we need at most ncx

P1/4 values, which can be a really low number. We thus
fill our network with MPI messages of really small size. This is bad because of the following
property:

Smaller MPI messages lead to smaller memory bandwidth.
(See, e.g., https://computing.llnl.gov/tutorials/mpi_performance/#MessageSize).

Property of MPI Communication

The next idea thus becomes really natural. Because the displacement does not depend on y,
we can communicate all the needed values for all the y values at once. This increases the size
of the buffer, but is better suited if we want to run our algorithm on a lot of processes. This
version is given in Figure 6.12.

Figure 6.13 compares different versions of the algorithm with transposition (one that always
stores f as f [x][y][vx][vy], one that always stores f as f [vx][vy][x][y] and one that changes from
one representation to the other at each transposition, to minimize strides during the interpo-
lation) to our two algorithms with domain decomposition (the one from Figure 6.10 that com-
municates 1d sub-arrays of f , and the one from Figure 6.12 that communicates 2d sub-arrays
of f ).

We did not implement the standard domain decomposition algorithm with a time step re-
striction: this algorithm would have exactly the same communication patterns as our algorithm
and thus similar results when choosing a time step that allows it to work.

If our first naive algorithm was not competitive against the transposition algorithm, when
applying this first optimization we obtain runs almost twice as fast as with the transposition
algorithm.

https://computing.llnl.gov/tutorials/mpi_performance/#MessageSize
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Local variable:
buffer[max(ncx * (ncy + Lagrange degree),

ncy * (ncx + Lagrange degree))].

Algorithm:
Recall that f[local][local][local][local]

1 Foreach vx
2 Foreach vy
3 Compute the displacement on the x-axis
4 Communicate the needed points
5 Foreach y
6 Foreach x
7 Interpolate on the x-axis from buffer
8 Compute the displacement on the y-axis
9 Communicate the needed points
10 Foreach x
11 Foreach y
12 Interpolate on the y-axis from buffer

Figure 6.12 – Domain Decomposition: v2 (modifications from Figure 6.10 in red).
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Figure 6.13 – Strong scaling on 2 048 cores (1 process per core): 1282 × 5122 grid. Two-stream
instability test case, 13 iterations with ∆t = 0.1. Architecture: Intel Broadwell EP (2016).
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Figure 6.14 – Strong scaling on 2 048 cores (1 process per core): 322 × 5122 grid. Two-stream
instability test case, 10 iterations with ∆t = 0.1. Architecture: Intel Broadwell EP (2016).

6.3.3 Second Communication Optimization (Future Work)

From now on, we will consider the transposition algorithm that switches from one represen-
tation to the other, because it is the fastest one on more processes, and we will consider the
domain decomposition algorithm with 2d communications.

One good theoretical property of the domain decomposition is that it can make use of more
processes. On a ncx × ncy × ncvx × ncvy grid, an algorithm with transposition cannot use
more than min(ncx · ncy, ncvx · ncvy) processes. This is due to the fact that each process needs
to have all the #„v values for the advection on #„x (and all the #„x values for the advection on #„v ).
When using domain decomposition, we can use up to ncx× ncy× ncvx × ncvy processes. We
will try to see if, in practice, the use of more processes than min(ncx · ncy, ncvx · ncvy) is really
profitable. We will thus here use a grid with fewer points.

Figure 6.14 compares the algorithm with transposition to our algorithm with domain de-
composition. These results show that up to 512 processes, the implementation with domain
decomposition is twice faster. Unfortunately, when using more processes, we face the same
problem we already faced before: MPI messages become too small, and the communications
become the main bottleneck. We also have to acknowledge that for the Poisson solver, there
are more communications when using domain decomposition than when using the transpo-
sition algorithm. This is due to the fact that there is an additional reduction step when using
domain decomposition (among processes that have same the same intervals for x and y but
different ones for vx and vy), which is not needed when using the transposition algorithm (a
process always has all the values for vx and vy when f is split in #„x ). Compare Listing 6.1 and
Listing 6.2.

It is not straightforward to optimize the communications needed for the Poisson solve, but
the communications needed for the advections can be optimized like before, by having 3d
communications instead of 2d ones when we want to use more processes. This version is given
in Figure 6.15.

If you compare Figure 6.12 and Figure 6.15, what has been done can be summarized in the
following set of loop transformations:

• first, a loop splitting, see Figure 6.16. It is not obvious that this transformation is legal.
It is due to the fact that the loops on vx and vy (lines 1–2) carry no dependence: each
iteration with vx = i and vy = j modifies only the values f [.][.][i][j]. We can thus safely
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1 if (! is_par_x )

2 exchange_parallelizations();

3 // Integration of f_local in v to generate spatial_density_local

4 pos = 0;

5 for (i = 0; i < size_x_par_x ; i++) {

6 for (j = 0; j < size_y_par_x ; j++) {

7 send_buf [pos] = 0;

8 for (k = 0; k < size_vx_par_x ; k++)

9 for (l = 0; l < size_vy_par_x ; l++)

10 send_buf [pos] += f_parallel_in_x [i][j][k][l];

11 send_buf [pos ++] *= velocity_mesh .delta_x * velocity_mesh .delta_y;

12 }

13 }

14 // Gather the concatenation of the spatial_density_locals

15 MPI_Allgatherv (send_buf , size_x_par_x * size_y_par_x , MPI_DOUBLE_PRECISION ,

recv_buf , recv_counts , displs , MPI_DOUBLE_PRECISION , MPI_COMM_WORLD );

16 // Rebuild spatial_density from the concatenation of the spatial_density_locals

17 pos = 0;

18 for (int process = 0; process < mpi_world_size ; process ++)

19 for (i = layout_par_x [process ]. i_min; i <= layout_par_x [process ]. i_max; i++)

20 for (j = layout_par_x [process ]. j_min; j <= layout_par_x [process ]. j_max;

j++)

21 spatial_density [i][j] = recv_buf [pos ++];

Listing 6.1 – 2d Poisson solver with transposition.

1 // Integration of f_local in v to generate spatial_density_local

2 pos = 0;

3 for (i = 0; i < size_x_local ; i++) {

4 for (j = 0; j < size_y_local ; j++) {

5 recv_buf [pos] = 0;

6 for (k = 0; k < size_vx_local ; k++)

7 for (l = 0; l < size_vy_local ; l++)

8 recv_buf [pos] += f_parallel [i][j][k][l];

9 recv_buf [pos ++] *= velocity_mesh .delta_x * velocity_mesh .delta_y;

10 }

11 }

12 // Reduce for processes that have same (x,y) but different (vx ,vy)

13 MPI_Reduce (recv_buf , send_buf , size_x_local * size_y_local , MPI_DOUBLE_PRECISION

, MPI_SUM , 0, comm_reduce );

14 // Gather the concatenation of the spatial_density_locals

15 if ( mpi_comm_reduce_rank == 0)

16 MPI_Gatherv (send_buf , size_x_local * size_y_local , MPI_DOUBLE_PRECISION ,

recv_buf , recv_counts , displs , MPI_DOUBLE_PRECISION , 0, comm_gather );

17 // Broadcast the spatial_density

18 MPI_Bcast (recv_buf , spatial_mesh .num_cell_x * spatial_mesh .num_cell_y ,

MPI_DOUBLE_PRECISION , 0, MPI_COMM_WORLD );

19 // Rebuild spatial_density from the concatenation of the spatial_density_locals

20 pos = 0;

21 for (int process = 0; process < mpi_comm_gather_size ; process ++)

22 for (i = layout_4d [ world_rank_from_comm_gather_rank[process ]]. i_min; i <=

layout_4d [world_rank_from_comm_gather_rank[process ]]. i_max; i++)

23 for (j = layout_4d [ world_rank_from_comm_gather_rank[process ]]. j_min; j

<= layout_4d [ world_rank_from_comm_gather_rank[process ]]. j_max; j++)

24 spatial_density [i][j] = recv_buf [pos ++];

Listing 6.2 – 2d Poisson solver with domain decomposition. Note that the actions reduce
(comm_reduce), gather (comm_gather) and broadcast (comm_world) can be replaced by the
actions allreduce (comm_reduce) and allgather (comm_gather).
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Local variable:
buffer[max(ncvx * ncx * (ncy + Lagrange degree),

ncvy * ncy * (ncx + Lagrange degree))].

Algorithm:
1 Foreach vx
2 Compute the displacement on the x-axis
3 Communicate the needed points
4 Foreach vy
5 Foreach y
6 Foreach x
7 Interpolate on the x-axis from buffer
8 Foreach vy
9 Compute the displacement on the y-axis
10 Communicate the needed points
11 Foreach vx
12 Foreach x
13 Foreach y
14 Interpolate on the y-axis from buffer

Figure 6.15 – Domain Decomposition: v3.

reorder all the iterations, as long as for a given (i, j), all instructions are performed in the
same order, which is the case here.

• then, a loop interchange, see Figure 6.17. It is quite clear that this is legal because nothing
depends on vx inside the loop body (lines 8–12).

• finally, we apply the same transformation that transformed Figure 6.10 to Figure 6.12:
when performing a displacement on the x-axis, nothing depends on vy so we may move
the loop-invariant code that computes the displacement up one loop level, and we may
also communicate more points all at once, and move this communication up one loop
level, see Figure 6.18.

6.3.4 Third and Fourth Communication Optimizations (Future Work)

One last optimization in the communications lies in the fact that, when performing an advec-
tion on #„x , the displacement is proportional to the velocity. It becomes clear that a process that
handles big values of velocities will have a bigger displacement, and thus will probably need to
ask a lot of values to the other processes, whereas a process which handles values of velocities
near 0 will probably already have all the needed values and will thus need to communicate
a lot less. Because we have a barrier at the end of each advection, we thus have to wait a
lot for the processes in charge of big velocity values, because they will require more time for
communication.

Figure 6.19 illustrates this problem. What is shown is the location of processes to which the
processes in the fourth column have to ask values for the displacement on the x-axis. The size
of the rectangles is proportional to the number of values a process has to ask. For example (a)
on the top row, we see that the process of the fourth column has only a tiny number of values
already present locally. It has to ask all the values from its right neighbor (shown in red), and
also a lot of values on the next neighbor on the right; (b) on the fourth row, we see that the
process of the fourth column already has the majority of values it needs for its computations
(shown in green). It only needs to ask some values to the left and right processes.

Thus, the processes on the top and bottom rows will have to wait for a lot of communica-
tions before they will be able to compute, whereas the processes on the center rows will be able
to compute a lot faster, because they need to ask less values to their neighbors.
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1 Foreach vx
2 Foreach vy
3 Compute the displacement on the x-axis
4 Communicate the needed points
5 Foreach y
6 Foreach x
7 Interpolate on the x-axis from buffer

8 Compute the displacement on the y-axis
9 Communicate the needed points
10 Foreach x
11 Foreach y
12 Interpolate on the y-axis from buffer

1 Foreach vx
2 Foreach vy
3 Compute the displacement on the x-axis
4 Communicate the needed points
5 Foreach y
6 Foreach x
7 Interpolate on the x-axis from buffer
7.1 Foreach vx
7.2 Foreach vy
8 Compute the displacement on the y-axis
9 Communicate the needed points
10 Foreach x
11 Foreach y
12 Interpolate on the y-axis from buffer

Figure 6.16 – From Figure 6.12 to Figure 6.15; first transformation: loop splitting.

1 Foreach vx
2 Foreach vy
3 Compute the displacement on the x-axis
4 Communicate the needed points
5 Foreach y
6 Foreach x
7 Interpolate on the x-axis from buffer
7.1 Foreach vx
7.2 Foreach vy
8 Compute the displacement on the y-axis
9 Communicate the needed points
10 Foreach x
11 Foreach y
12 Interpolate on the y-axis from buffer

1 Foreach vx
2 Foreach vy
3 Compute the displacement on the x-axis
4 Communicate the needed points
5 Foreach y
6 Foreach x
7 Interpolate on the x-axis from buffer
7.1 Foreach vy
7.2 Foreach vx
8 Compute the displacement on the y-axis
9 Communicate the needed points
10 Foreach x
11 Foreach y
12 Interpolate on the y-axis from buffer

Figure 6.17 – From Figure 6.12 to Figure 6.15; second transformation: loop interchange.

1 Foreach vx
2 Foreach vy
3 Compute the displacement on the x-axis
4 Communicate the needed points
5 Foreach y
6 Foreach x
7 Interpolate on the x-axis from buffer
7.1 Foreach vy
7.2 Foreach vx
8 Compute the displacement on the y-axis
9 Communicate the needed points
10 Foreach x
11 Foreach y
12 Interpolate on the y-axis from buffer

1 Foreach vx
2 Compute the displacement on the x-axis
3 Communicate the needed points
4 Foreach vy
5 Foreach y
6 Foreach x
7 Interpolate on the x-axis from buffer
7.1 Foreach vy
8 Compute the displacement on the y-axis
9 Communicate the needed points
9.1 Foreach vx
10 Foreach x
11 Foreach y
12 Interpolate on the y-axis from buffer

Figure 6.18 – From Figure 6.12 to Figure 6.15; third transformation.
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x

vx

Figure 6.19 – Domain Decomposition: 644 grid on 84 = 4 096 processes. Location of the f values
needed for processes who hold x values in the fourth column (sub-timestep of 0.5, velocities in
[−5; 5]).

Can we avoid this problem? We can think of dynamic domain decomposition. The pro-
cesses of the top rows of Figure 6.19 could all switch their local domains one tile to the right, in
order to be in the same good position as the processes on the middle rows. And processes on
the bottom rows could all switch their local domain one tile to the left.

However, we can see on rows 3 and 6 that the gain will not necessarily be tremendous:
the green data and the red data are almost equivalent, thus the processes on those rows will
probably take longer time even if we switch their tile.

Figure 6.20 shows that it is possible to refine the domain decomposition. In addition to the
tile switch idea, we might decompose the domain in velocities with intervals containing more
or less values. Processes that have almost as much data locally as they need to receive from
neighbors would handle less velocities than the average (velocities for which the green or red
rectangle is next to an almost black one), and processes that already have locally most of the
data would handle more velocities (velocities for which the green or red rectangle is next to
almost white ones). This decomposition can be done at the beginning of the simulation and
does not need to be adapted dynamically because the advections are always with the same
coefficient. However, we must acknowledge that this solution only works with the Strang
splitting. When using other splittings, the coefficients are not always the same at each sub-
step, hence, we cannot decompose the domain efficiently for all the sub-steps. It is probable
that there is a best configuration anyway, but this best configuration will not be that easy to
find.

6.4 Takeaways

In this chapter, we tested various parallel algorithms for the 2d2v semi-Lagrangian method.
We designed an algorithm with domain decomposition that gets rid of limitations found in the
state-of-the-art. This algorithm is shown to be twice faster than the transposition algorithm.

We identified three ways to further improve our implementation to make it scale better on
more processes. It would be interesting to test them, and also to apply our ideas in a 3d3v
implementation.

Last but not least, it would be interesting to compare the efficiency of the different algo-
rithms to other implementations, as we did for the Particle-in-Cell method in Table 3.3. An
interesting metric for semi-Lagrangian implementations is the number of cells updated by sec-
ond [207, Section 6].
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x
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22 velocities

21 velocities

21 velocities

Figure 6.20 – Domain Decomposition: 644 grid on 4 096 processes. Location of the f values
needed for processes who hold x values in the fourth column (sub-timestep of 0.5, velocities in
[−5; 5]).
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Chapter 7

Numerical Results

This chapter presents numerical results from all the test cases studied during this thesis. It also
introduces a framework, called “PICSL” (pronounced “pixel”), which allows to run simulations
with an arbitrary number of species, each species being simulated by a PIC or a SL method.
Depending on the number of dimensions of the simulation, of the test case considered, and
sometimes depending on the species inside a simulation, one or the other of these methods can
be better. It is thus comfortable to have a common framework for these two methods.

First, Section 7.1 presents test cases from Chapters 4–6. All those test cases simulate only
one species.

Then, Section 7.2 presents the PICSL framework. We introduced this framework in [207].
We first use it to simulate a two-species 1d1v test case from the literature, then we simulate a
new one-species 2d2v test case. Those two test cases are validated with mathematical tools, but
the details of this validation are left to the interested reader inside this article and not presented
here, as it is not our own contribution. A third two-species 2d2v test case is also simulated.

7.1 Test Cases from Previous Chapters

7.1.1 Some References on Landau Damping in 1d

A test case which was the most studied during this thesis is the Landau damping, in 1d, 2d and
3d. As said in the introduction, this test case, when choosing parameters which lead to a linear
damping, can be explained theoretically. It is possible to prove (see, e.g., [35, Section 4.4.2]) that
the electric field E(x, t) will behave, after a short time, like:

4Areγt sin(kx) cos(ωt− φ).

where A is the perturbation, and r, γ, k, ω and φ will be explained hereafter. We can then,
e.g., match the electric energy 1

2

∫ L
0 E(x, t)2 dx against (7.1).

1
2
(4Ar)2 π

k
e2γt(0.5 + 0.5 cos(2(ωt− φ))). (7.1)

Vlasov gave an approximation of ω, the frequency of the waves that appear in a plasma
(known as space-charge waves, electrostatic waves or Langmuir waves), in [178, Equation 49]:

ω2 = 1 + 3k2

We can then deduce the following formula1, which can be found in [157, Equation 16]:

ω = 1 +
3
2

k2

1By performing a Taylor expansion: when x is small, (1 + x)a = 1 + ax + o(x).
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k ω γ r φ

0.2 1.0640 −0.00005510 1.129664 0.00127377
0.3 1.1598 −0.012623 0.63678 0.114267
0.4 1.2850 −0.066133 0.424666 0.3357725
0.5 1.4156 −0.15336 0.3677 0.536245

Table 7.1 – Impact of k on Landau damping.

k ω γ r φ
π
11 1.14329890862 −0.00846641513031 0.682419563231 0.0856428742970√

2
2 1.68289327433 −0.402080551005 0.296396520576 0.857725164340√
3

2 1.88197206516 −0.634778971007 0.274195506626 1.04424333451

Table 7.2 – Impact of k on Landau damping.

Landau then gave an approximation of γ, the damping, in [157, Equation 17]:

γ = −
√

π

8
1
k3 e−

1
2k2

This formula can also be found, e.g., in [5, Section 5-15, Equation 2]. A little refinement of
the computation gives us the following formula, which can be found in [26, Equation 1.9.7]:

γ = −
√

π

8
1
k3 e−

1
2k2− 3

2

Some more refinements of these approximations (more accurate when k < 0.3) can be found
in [163, Equations 21 & 24]:







ω = 1 +
3
2

k2 +
15
8

k4 +
147
16

k6

γ = −
√

π

8

(
1
k3 − 6k

)

e−
1

2k2− 3
2−3k2−12k4

Some further refinements (even more accurate when k < 0.6) can be found in [80, Equa-
tion 53]2:







ω =1 +
3
2

k2 +
15
8

k4 +
147
16

k6 + 736.437k8 − 14729.3k10

+ 105429k12 − 370151k14 + 645538k16 − 448190k18

γ =−
√

π

8

(
1
k3 − 6k− 40.7173k3 + 3900.23k5 − 2462.25k7 − 274.99k9

)

e−
1

2k2− 3
2−3k2−12k4−575.516k6+3790.16k8−8827.54k10+7266.87k12

Those formulas only bring approximate results, and only for small values of k. Therefore,
the best way of obtaining ω and γ values is to numerically find them, by finding the zeros of
a particular function. For example, using formulas from [26] for k = 0.1 give 3.3% error for ω
and 61% error for γ, see [163]. Computing the zeros numerically has been done, e.g., in [140]
(for values of k from 0.25 to 2.0, every 0.05) and in [35, Section 4.4.2] (more accurate values for
k = 0.2, 0.3, 0.4 and 0.5 together with values for r and φ, see Table 7.1).

During this thesis, we computed some more values, see Table 7.2. Those zeros were com-
puted thanks to the library ZEAL [156] and thanks to Maple [188].

2With a typo in the formula for ωi: one should read +3900.23k5 instead of −3900.23k5.
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Figure 7.1 – Time evolution of the electric energy, Landau damping 2d2v test case in (7.2) and
(7.3).

7.1.2 A 2d2v test case: Landau damping

Description of the equations and initial conditions

We consider a classical Landau damping test case [5, 23]. We look for f satisfying






∂t f + v · ∇x f − E · ∇v f = 0,
−∆xΦ = 1−

∫

R2 f dvx dvy,
−∇xΦ = E,

(7.2)

with initial function as in [148] (the spatial domain is Ω = [0, 4π)2):

f (0, x, v) =
(

1 + 0.01 cos
( x

2

)

cos
(y

2

)) 1
2π

e−
|v|2

2 . (7.3)

Numerical results

Figure 7.1 represents the evolution of the electric energy. A grid size of 256× 256 is chosen, with
a time step of 0.05 and three different values for the number of particles (50 million particles,
1 billion particles and 100 billion particles). With our notations, this test case corresponds to
A = 0.01 and has a dominant mode k =

√
2

2 . We see on the figure that the decay slope of the
electric energy is in accordance with the theoretical values ω = 1.68289 and γ = −0.402080
obtained from the dispersion analysis, see Table 7.2. Here, we fitted the values for r and φ.

We see on the figure the influence of the number of particles on the simulation: to accurately
retrieve the values of the electric energy, we need 100 billion particles. On this kind of test cases,
another mean of reducing the noise should probably be used.

Figure 7.2 represents the conservation of the total energy. We plot the relative error across
time and see that the total error is well conserved, as expected.

7.1.3 A 3d3v test case: Landau damping

Description of the equations and initial conditions

We consider a classical Landau damping test case [5, 23]. We look for f satisfying






∂t f + v · ∇x f − E · ∇v f = 0,
−∆xΦ = 1−

∫

R3 f dvx dvy dvz,
−∇xΦ = E,

(7.4)

with initial function as in [78] (the spatial domain is Ω = [0, 22)3):
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Figure 7.2 – Conservation of the total energy, Landau damping 2d2v test case in (7.2) and (7.3).
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f0(x, y, z, v) =
1

(2π)3/2 e−
|v|2

2 L(x)L(y)L(z) with L(w) = 1 + 0.05 cos
(

w
π

11

)

(7.5)

Numerical results

Figure 7.3 represents the evolution of the electric energy. A grid size of 64× 64× 64 is chosen,
with a time step of 0.05 and two different values for the number of particles (50 million particles
and 2 billion particles). With our notations, this test case corresponds to A = 0.05 and has a
dominant mode k = π

11 . We see on the figure that the decay slope of the electric energy is in
accordance with the theoretical value γ = −0.008466 obtained from the dispersion analysis,
see Table 7.2.

We see on the figure that contrary to the 2d2v Landau damping test case, a low number of
particles suffices to accurately retrieve the values of the electric energy. It is because the initial
function is mostly the superposition of 1d functions, and not a “real” 3d one.

Figure 7.4 represents the conservation of the total energy. We plot the relative error across
time and see that the total error is well conserved, as expected.
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Figure 7.4 – Conservation of the total energy, Landau damping 3d3v test case in (7.4) and (7.5).

7.1.4 A 2d3v test case: Electron hole

Description of the equations and initial conditions

We consider a more complex test case proposed by Muschietti et al. [165]. We look for f satis-
fying







∂t f + v · ∇x f − (E + v× B) · ∇v f = 0,
−∆xΦ = 1−

∫

R3 f dvx dvy dvz,
−∇xΦ = E,

(7.6)

The external magnetic field B = B0ex is aligned with the x-axis and has amplitude B0 = 0.2.
We simulate 64 billion particles on a 512 × 512 grid. Time step is 0.1 and spatial domain is
[0, L)2, with L = 32. The initial function is:

f (x, y, v) = F1(v
2
x − 2φ(x, y))e−50(v2

y+v2
z)

with potential φ(x, y) = e−0.5((x−L/2)/∆‖−0.3 cos(0.39y))
2

,
∆‖ = 3and F1 defined as

F1(w) =







√
−w

π∆2
‖

(

1 + 2ln( ψ
−2w )

)

+ 6+(
√

2+
√
−w)(1−w)

√
−w

π(
√

2+
√
−w)(4−2w+w2)

, for − 2ψ ≤ w < 0,

6
√

2
π(8+w3)

, for w > 0.

(7.7)

Numerical results

Figure 7.5 shows the charge density ρ(t, x, y) = 1−
∫

R3 f (t, x, y, v)dvx dvy dvz, on the left at
time t = 20, and on the right at time t = 40. These results are qualitatively similar to those
from Muschietti et al. [165].

In addition, we studied the convergence of the simulation with respect to the number of
particles and to the grid size. To that end, we compare, for different settings of these two
parameters, the time evolution of a quantity representative of the instability3. Results appear
in Figure 7.6. They show that using a small 32× 32 grid with 200 million particles as considered
by Muschietti et al. exhibits the correct qualitative behavior up to t = 50, but diverges beyond
this point.

For a quick simulation, it appears preferable to use a 64 × 64 grid with only 20 million
particles, as it gives quantitatively accurate results up to t = 50. For longer simulations, our
results show that using a 128 × 128 or a 256 × 256 grid with 200 million particles suffices to

3This quantity, which we call “y part of electric field norm”, is defined as half of the square root of the electric
energy

∫

R2 (E2
x + E2

y) dx dy minus the part of that energy corresponding to the modes in x (here, the first 20 modes).
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Figure 7.5 – Time evolution of ρ(t, x, y) = 1−
∫

R3 f dvx dvy dvz at t = 20 (left) and t = 40
(right), 2d3v electron hole test case in (7.6) and (7.7).
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Figure 7.6 – Time evolution of the y part of electric field norm for different values of the number
of particles and of the grid size, 2d3v electron hole test case in (7.6) and (7.7).
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give accurate results up to t = 100. Indeed, the two corresponding curves are close to that of
our large-scale simulation, which uses a 512× 512 grid with 64 billion particles (the top-most
curve at t = 100).

Figures 7.7–7.9 represent the conservation of the total energy. We plot the relative error
across time and see the influence of the grid size and of the number of particles on the conser-
vation on this quantity.

7.2 The PICSL Framework

7.2.1 Introduction

We consider the two-species Vlasov–Poisson system in 2d2v. We look for ion and electron
distribution functions fs = fs(t, x, v), with s ∈ {e, i} and electric field E = E(t, x), satisfying







∂t fi + v · ∇x fi +
q

mi
E · ∇v fi = 0,

∂t fe + v · ∇x fe − q
me

E · ∇v fe = 0,
−ε0∆xΦ = q

∫

R2( fi − fe)dvx dvy,
−∇xΦ = E.

(7.8)

and subject to initial distributions fi(t = 0, x, v) and fe(t = 0, x, v). Here q = 1 is the
charge, ms is the mass of the species s and ε0 = 1 is the dielectric constant, t ∈ R

+ is the time,
x = (x, y) ∈ Ω = R

2/(LxZ × LyZ) the position and v ∈ R
2 the velocity. Φ = Φ(t, x) is

the electric potential. The original aim of the PICSL Cemracs project was to develop an im-
plementation that works both for Particle-in-Cell (PIC) and semi-Lagrangian (SL) method and
that is able to solve system (7.8). We focus here on some of the difficulties of kinetic simu-
lations that are the multi-dimensionality (here 2d2v instead of 1d1v), multi-species (ions and
electrons) and multi-methods (both PIC and SL) aspects. Extensions to higher dimensions,
Vlasov–Maxwell (see [175] for such a recent work, that discusses also the pros/cons between
PIC and semi-Lagrangian methods) and gyrokinetics (that includes the issue of using more
complex geometries) are out of the scope of this work.

In the literature, works on single species 1d1v Vlasov–Poisson solvers are abundant. We
refer here to [169, 166, 148, 146, 147, 141, 92, 136, 133, 99, 160, 170] for works on 2d2v Vlasov–
Poisson simulations and to [132, 159] on multi-species simulations. This list is far from being
exhaustive; there is a huge number of papers in plasma physics on the subject. Validation
with respect to the dispersion relation is often performed for 1d1v simulations (see for exam-
ple [80], where comparison of different implementations is also performed). The dispersion
relation analysis, even if less used, permits also to study multi-dimensional and multi-species
simulations.

Using such an analysis, our first aim is to justify the two-species simulations of [132], fol-
lowing [35], and consisting in the linearization of the equations around the Maxwellian equi-
librium. Note that the dispersion analysis dates back to Landau [157]. With respect to the
usual single species case, two main modes play here a role and their relative weights have an
importance, in order to catch the right behavior. A finer study permits to exhibit relevant non-
linear effects, thanks to a second order expansion as done in [143], for example. Details of this
analysis are in [207].

We then had in mind to extend the results to the multi-dimensional case. We focus there
first on the single species case and are able to show a true multi-dimensional effect solely visible
from a second order expansion. Note that in the literature, usual 2d2v test cases reduce to 1d1v
(see previous references based on Landau and two-stream instabilities test cases; note that in
[160], an effort has been put to get a two dimensional character). We then could study the
two-species case, in the 2d2v setting, but such analysis is basically the superposition of the two
previous analyses and we prefer here to focus on performing nonlinear simulations, where the
analysis coming from the dispersion relation is anyway no more valid.
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Figure 7.7 – Conservation of the total energy, 2d3v electron hole test case in (7.6) and (7.7).
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Figure 7.8 – Conservation of the total energy, 2d3v electron hole test case in (7.6) and (7.7).
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Figure 7.9 – Conservation of the total energy, 2d3v electron hole test case in (7.6) and (7.7).
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If a subsequent part of the work relies on the verification of the implementation through
the dispersion relation, another part of the work is based on the comparison and the mixing
of semi-Lagrangian and PIC methods. As the two methodologies are quite different, getting
the same answers from both methods is a further validation. On the other hand, defining a
common implementation that works for both of them is a step to allow for a wider application
range, as each method has his own benefits and drawbacks. We could for example consider
in the future, the PIC method when a species is well localized (which permits to prevent from
the discretization of the whole phase space) and the semi-Lagrangian method for other species.
Note that the coupling of the two methods seems not to have been considered; at least, such
approach is rare, as generally one method is privileged for a given simulation. The difficulties
rely here on the definition of a common framework and on the need of expertise in both meth-
ods. In the numerical results, we will see that the present approach does not generate extra
problems due to the coupling of the methods, which is encouraging for further developments.

Section 7.2.2 presents the numerical method and implementation details that permit to deal
with both PIC and SL methods. We then describe the equations and test cases analyzed, to-
gether with numerical results. Section 7.2.3 studies the two-species 1d1v test case proposed in
[132]. Section 7.2.4 proposes a new true 2d2v one species test case. Section 7.2.5 finally presents
full non linear two-species results in 2d2v (an extension to two-species of a test case presented
in [160]).

7.2.2 Numerical Method

In order to solve the Vlasov equation, we develop an implementation that is able to use both
Particle-in-Cell (PIC) and semi-Lagrangian methods, in the framework of the SeLaLib4 library.
For the Poisson solver, we classically use the FFT; time and space (semi-Lagrangian or PIC) will
be further detailed thereafter. The framework is such that we can use PIC for the two species,
semi-Lagrangian for the two species, or PIC for one species and semi-Lagrangian for the other
species.

Time discretization

We consider two types of time discretizations. The first one is based on a splitting by direction,
as in [132] and the second one is a splitting by species.

Splitting first by direction: The algorithm can be sketched as in Figures 7.10 and 7.11 for
the classical Strang splitting. This scheme can be generalized to higher order splitting; we will
here use the classical 6th order splitting of Blanes and Moan [137], as in [93].

Splitting first by species: In order to have the possibility of dealing with the species differ-
ently, we developed another scheme based on a splitting by species. It is depicted in Figure 7.12.
Once more, this scheme can be generalized to higher order splitting. Nevertheless, we cannot
use the splitting coefficients from the classical 6th order splitting, because they are not suitable
for a splitting by species.

Semi-Lagrangian discretization

We use a classical backward semi-Lagrangian (BSL) method like in Chapter 6, consisting here in
solving successive constant advection equations on a uniform 1d periodic mesh [94]. Centered
Lagrange interpolation of degree 9 is used for the interpolation; see for example [101]. Con-
cerning the splitting by species, we use Strang splitting on each species for the corresponding
solving of the Vlasov–Poisson equation.

4http://selalib.gforge.inria.fr/

http://selalib.gforge.inria.fr/
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Parameters :
∆t, the time step.
ncx× ncy, the size of the spatial grid.

Variables :
felectrons, the distribution function (4d array for SL, array of particles for PIC).
ρ[ncx][ncy], a 2d array containing the charge distribution.
E[ncx][ncy], a 2d array containing the self-induced electric field.

Initialization :
1 Initialize felectrons

Algorithm :
2 Foreach time iteration
3 Advection of felectrons in x over ∆t/2 ∂t felectrons + v · ∇x felectrons = 0
4 Compute ρ from felectrons Integration in v for SL, deposit for PIC
5 Compute E from ρ Poisson solver
6 Advection of felectrons in v over ∆t ∂t felectrons− E · ∇v felectrons = 0
7 Advection of felectrons in x over ∆t/2 ∂t felectrons + v · ∇x felectrons = 0
8 End Foreach

Figure 7.10 – One species (electrons) pseudo-code.

Parameters :
∆t, the time step.
ncx× ncy, the size of the spatial grid.

ε =

√
melectrons

mions
, the square root of the mass ratio.

Variables :
felectrons and fions, the distribution function for electrons and ions (4d arrays for SL, arrays of particles for PIC).
ρelectrons[ncx][ncy], ρions[ncx][ncy] and ρ[ncx][ncy], 2d arrays containing the charge distribution.
E[ncx][ncy], a 2d array containing the self-induced electric field.

Initialization :
1 Initialize felectrons and fions

Algorithm :
2 Foreach time iteration
3 Advection of felectrons in x over ∆t/2 ∂t felectrons + (1/ε)v · ∇x felectrons = 0
4 Advection of fions in x over ∆t/2 ∂t fions + v · ∇x fions = 0
5 Compute ρelectrons from felectrons and ρions from fions Integration in v for SL, deposit for PIC
6 Compute E from ρ = ρions − ρelectrons Poisson solver
7 Advection of felectrons in v over ∆t ∂t felectrons− (1/ε)E · ∇v felectrons = 0
8 Advection of fions in v over ∆t ∂t fions + E · ∇v fions = 0
9 Advection of felectrons in x over ∆t/2 ∂t felectrons + (1/ε)v · ∇x felectrons = 0
10 Advection of fions in x over ∆t/2 ∂t fions + v · ∇x fions = 0
11 End Foreach

Figure 7.11 – Two-species pseudo-code, splitting by direction.
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Parameters :
∆t, the time step.
ncx× ncy, the size of the spatial grid.

ε =

√
melectrons

mions
, the square root of the mass ratio.

Variables :
felectrons and fions, the distribution function for electrons and ions (4d arrays for SL, arrays of particles for PIC).
ρelectrons[ncx][ncy], ρions[ncx][ncy] and ρ[ncx][ncy], 2d arrays containing the charge distribution.
E[ncx][ncy], a 2d array containing the self-induced electric field.

Initialization :
1 Initialize felectrons and fions

Algorithm :
2 Foreach time iteration
3 Solve Vlasov–Poisson (ions, ∆t/2)
4 Solve Vlasov–Poisson (electrons, ∆t)
5 Solve Vlasov–Poisson (ions, ∆t/2)
6 End Foreach

Subroutine Solve Vlasov–Poisson (species, time_step) :
7 Advection of fspecies in x over time_step/2
8 Compute ρspecies from f

9 Compute E from ρ = ρions − ρelectrons

10 Advection of fspecies in v over time_step

11 Advection of fspecies in x over time_step/2
12 Compute ρspecies from fspecies

Figure 7.12 – Two-species pseudo-code, splitting by species.

PIC discretization

A Particle-in-Cell (PIC) method consists in discretizing (sampling) the distribution function by
a collection of N macro-particles that move in the phase space following the characteristics of
the Vlasov equation. We use the classical PIC method, explained in Chapter 2, with linear or
cubic splines for the deposition of the charge and for the interpolation of the electric field. The
macro-particles are initialized randomly, which ensures a stochastic convergence in 1√

N
.

Time schemes presented in Figures 7.10, 7.11 and 7.12 are still valid for the PIC method.
These schemes are used when running simulations using PIC for one species and BSL for the
other. However, to ensure efficiency when running simulations only with the PIC method, a
leap-frog scheme is used (second order in time).

7.2.3 A 1d1v two-species test case

Description of the equations and initial conditions

We first consider a test case studied by [132]. We look for fi, fe satisfying







∂t fi + v ∂x fi + E ∂v fi = 0,
∂t fe +

1
ε v ∂x fe − 1

ε E ∂v fe = 0,
∂xE =

∫

R
( fi − fe)dv,

(7.9)

with ε =
√

me
mi

, the root of the mass ratio between ions and electrons, and with initial func-

tions







fe(0, x, v) = 1√
2π

e−
v2
2 ,

fi(0, x, v) = v2√
2πσ3 e−

v2

2σ2 (1 + A cos(kx)),
(7.10)

with k = 2π
L , and A the amplitude of the perturbation. The phase-space domain is [0, L)×

[−vmax, vmax). We will take here σ = 1
2 and L = 21, as in [132], and vmax = 6.

This is a first example of two-species simulation. Our goal is to reproduce these results
[132] from the literature with our commonly used methods (as in [101] for example) and also
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to provide a dispersion analysis, which permits to further validate the implementation. Note
that this test is 1d1v, but it will be simulated in the 2d2v implementation; this enables to have
a first check of the implementation.

Numerical results

We take here ε = 1, as we first want here to validate the two-species feature; this permits to have
a first example taken from the literature [132] that is here justified with the dispersion relation
analysis and that can be cheaply reproduced in this one dimensional context. On Figure 7.13
(left, logarithmic scale; right, standard scale), we represent, for the perturbation A = 0.0001,

the electric energy defined by
√

1
2

∫ L
0 |E|2 dx versus time t and also the absolute value of the

first and second Fourier modes multiplied by
√

1
2 , in order to be comparable to the electric

energy. We represent also theoretical results, coming from the study of the dispersion analysis
developed in [207, Section 3]. The theoretical first mode is here the expression

E1 = A |−0.1 exp(0.089t)− 6.9 cos(1.5t))| . (7.11)

It comes from the first order dispersion relation whose more precise expression, using the
two first relevant zeros, is

A |a1 exp(γ1t) + a2 exp(γ2t) cos(ωt) + a3 exp(γ2t) sin(ωt)| ,
with

a1 = −0.098626662403769140798, a2 = −6.9231540740080643228, a3 = −0.015835049471186903442,
γ1 = 0.089001301682640372604, γ2 = −0.00015911724084755207863, ω = 1.5006859732648583225.

We remark that this analytical expression permits to describe precisely, up to time t = 80,
the behavior of the first mode that is simulated and also the whole electric energy, as this first
mode is dominant. For the simulation, we have used the BSL method on a 1024× 2048 grid,
with ∆t = 0.1. The study of the linear analysis at order 2 developed in [207, Section 3.2] permits
to explain the behavior of the electric energy up to time t = 90, and the behavior of the second
Fourier mode from initial time to time t = 90. We have used here the following analytical
expression for the second Fourier mode

E2 = A2 (0.3 exp(2 · 0.089t) + 0.7 exp(0.145t)) . (7.12)

Here the coefficients 0.3 and 0.7 are chosen to fit the numerical results, 0.089 is an approxi-
mation of γ1 and 0.145 is the rounding of 0.144982725814, coming from the dispersion analysis

of [207, Section 3.2]. The theoretical electric energy is then given in the figures by
√

E2
1 + E2

2.
Note that after time 100, we are in the non linear phase and the dispersion relation analysis is
no more valid.

On Figure 7.14, we take A = 0.01, as in [132]. We take here as parameters, the BSL method
on a grid 128× 256 with ∆t = 0.02. The behavior is similar. As the perturbation is bigger, the
non linear phase appears sooner. We can note also that the first mode does not have time to
develop and that the instability is essentially explained by the second order expansion.

Then, we study the influence of the numerical parameters, on Figure 7.15. We see that
for A = 0.0001, the grid 64× 256 is quite good, as the difference with the refined run on a grid
1024× 2048 (similar to 2048× 4096) is only visible at the end of the simulation, around T = 150.
For A = 0.01, we get converged results until T around 80− 100; then for longer times, we see
that the results start to differ, and the grid 64× 256 seems not fine enough. For the time step,
it seems that ∆t = 0.1 is a good choice, as the results are very similar between ∆t = 0.02 or
∆t = 0.1.
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Figure 7.13 – A = 0.0001, 1d1v test case in (7.9) and (7.10)

Figure 7.14 – A = 0.01, 1d1v test case in (7.9) and (7.10)

On Figures 7.22–7.26, we can appreciate the convergence on the diagnostics of conservation
of L1, L2 norms; the mass is conserved up to machine precision.

x − vx cut permits to measure the structures and the filaments, here for A = 0.01 (see
Figures 7.16–7.19). It is confirmed that at time T = 80, the mesh 64× 256 correctly describes
the ions (see Figures 7.20 and 7.21). At time T = 150, however, as already seen on the electric
energy (Figure 7.15, right), we see the differences between the fine run (512 × 2048 grid) and
the coarse one (64× 256) for the ions (see Figures 7.18 and 7.19); for the electrons the differences
are smaller.

7.2.4 A new true 2d2v one-species test case

Description of the equations and initial conditions

We focus then on 2d2v phase space. We look for f satisfying







∂t f + v · ∇x f − E · ∇v f = 0,
−∆xΦ = 1−

∫

R2 f dvx dvy,
−∇xΦ = E,

(7.13)

with initial function

f (0, x, v) =
(

1 + A

(

cos
(y

2

)

+ cos
(

x + y

2

)))
v2

x

2π
e−

|v|2
2 . (7.14)

We take Lx = Ly = 4π, the phase-space domain is [0, 4π)2 × [−vmax, vmax)2 and vmax = 10.
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Figure 7.15 – Convergence study of the electric energy: A = 0.0001 (left) and A = 0.01 (right),
1d1v test case in (7.9) and (7.10)

Figure 7.16 – x− vx cut (electrons distribution)
for A = 0.01, BSL ∆t = 0.1 on 64× 256 grid, at
time T = 150, 1d1v test case in (7.9) and (7.10)

Figure 7.17 – x− vx cut (electrons distribution)
for A = 0.01, BSL ∆t = 0.1 on 512× 2048 grid,
at time T = 150, 1d1v test case in (7.9) and
(7.10)

Figure 7.18 – x− vx cut (ions distribution) for
A = 0.01, BSL on 64× 256 grid, at time T =
150, 1d1v test case in (7.9) and (7.10)

Figure 7.19 – x− vx cut (ions distribution) for
A = 0.01, BSL ∆t = 0.1 on 512× 2048 grid, at
time T = 150, 1d1v test case in (7.9) and (7.10)
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Figure 7.20 – x− vx cut (ions distribution) for
A = 0.01, BSL ∆t = 0.1 on 64 × 256 grid, at
time T = 80, 1d1v test case in (7.9) and (7.10)

Figure 7.21 – x− vx cut (ions distribution) for
A = 0.01, BSL ∆t = 0.1 on 512× 2048 grid, at
time T = 80, 1d1v test case in (7.9) and (7.10)

Figure 7.22 – Relative error of L1 norm, A = 0.01, 1d1v test case in (7.9) and (7.10)

Figure 7.23 – L2 norm, A = 0.01, 1d1v test case in (7.9) and (7.10)
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Figure 7.24 – Relative mass error, A = 0.01, 1d1v test case in (7.9) and (7.10)

Figure 7.25 – Relative error of L1 norm, A = 0.0001, 1d1v test case in (7.9) and (7.10)

Figure 7.26 – L2 norm, A = 0.0001, 1d1v test case in (7.9) and (7.10)
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This test permits to capture the interaction of different modes and reveals 2d space features,
which would not be visible by 1d1v implementations. We are not aware of such a test case in
the literature; it seems not to be standard.

Numerical results

On Figure 7.27 (left, logarithmic scale; right, standard scale), we represent, for the perturbation

A = 0.1, the electric energy defined by
√

1
2

∫ Lx

0

∫ Ly

0 |E|2 dx dy versus time t and also the absolute

value of the first and second Fourier modes multiplied by
√

1
2 , in order to be comparable to the

electric energy. We represent also theoretical results, coming from the study of the dispersion
analysis developed in [207, Section 3]. The theoretical first mode is here the expression

E1 = 0.89 |cos(1.416t + 2.6) exp(−0.1533x))| . (7.15)

We have here only used the theoretical values 1.416, −0.1533 and fitted the two other coef-
ficients.

We remark that this analytical expression permits to describe precisely, up to time t = 12,
the behavior of the first mode that is simulated and also the whole electric energy, as this first
mode is dominant. For the simulation, we have used the BSL method on a 32× 32× 256× 256
grid, with ∆t = 0.1. The study of the linear analysis at order 2 developed in [207, Section 3.2]
permits to explain the behavior of the electric energy up to time t = 25, and the behavior of
the second Fourier mode from initial time to time t = 25. We have used here the following
analytical expression for the second Fourier mode

E2 = 0.0028 exp(0.259t) (7.16)

Here the coefficient 0.0028 is chosen to fit the numerical results, 0.259 is coming from the
dispersion analysis of [207, Section 3.2]. The theoretical electric energy is then given in the

figures by
√

E2
1 + E2

2. Note that after time 25 − 30, we are in the non linear phase and the
dispersion relation analysis is no more valid.

We then study the convergence on the diagnostic of the electric energy on Figures 7.28 and
7.29 (left). We notice that both PIC and BSL methods converge to the same state in the non
linear phase, which permits to validate the results, from this cross comparison.

We see on Figure 7.29 (right) the time evolution of the L2 norm; we notice that the conser-
vation is clearly improved by refining the grid in space.

On Figures 7.30 and 7.31, we see x − vx and y − vy cuts; the first looks similar to two-
stream instability and the second to Landau damping simulations. The filaments seem to be
well resolved thanks to a relatively high number of points in the velocity directions.

On Figure 7.32, we see the contour plots of ρ at different times; we clearly see the behavior
of the modes: first the mode (0, 1) dominates and then it is the mode (1, 0).

7.2.5 A 2d2v two-species test case

Description of the equations and initial conditions

We look for fi, fe satisfying







∂t fi + v · ∇x fi + E · ∇v fi = 0,
∂t fe +

1
ε v · ∇x fe − 1

ε E · ∇v fe = 0,
−∆xΦ = 1−

∫

R2( fi − fe)dvx dvy,
−∇xΦ = E,

(7.17)
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Figure 7.27 – Comparison between simulation and analytical results from dispersion relation,
on the electric energy and the relevant modes. A = 0.1, 2d2v test case in (7.13) and (7.14)

Figure 7.28 – Time evolution of electric energy, with convergence of BSL (left) and PIC (right).
A = 0.1, 2d2v test case in (7.13) and (7.14). Different grid sizes for BSL and different numbers
of particle for PIC are used. Time step is ∆t = 0.1. The reference solution is here BSL with grid
size 128× 128× 1024× 1024.

Figure 7.29 – Left: time evolution of electric energy with convergence in time for BSL. The
solution with BSL with grid size 128× 128× 1024× 1024 and ∆t = 0.1 is similar to the solution
with 64 × 64 × 512 × 512 and ∆t = 0.1, which is also similar to the solution with 64 × 64 ×
512× 512 and ∆t = 0.01. Right: time evolution of L2 norm of f . A = 0.1, 2d2v test case in (7.13)
and (7.14).
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Figure 7.30 – x− vx cut for A = 0.1, 2d2v test case in (7.13) and (7.14); BSL 128× 128× 1024×
1024, ∆t = 0.05 at final time t = 50.

Figure 7.31 – y− vy cut for A = 0.1, 2d2v test case in (7.13) and (7.14); BSL 128× 128× 1024×
1024, ∆t = 0.05 at final time t = 50.
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Figure 7.32 – ρ at different times (t = 0, 5, 10, 15, 20, 50); BSL 128× 128× 1024× 1024, ∆t = 0.05;
A = 0.1, 2d2v test case in (7.13) and (7.14).
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with ε =
√

me
mi

, the root of the mass ratio between ions and electrons and with initial func-

tions







fe(0, x, v) = 1
2π e−

|v|2
2 ,

fi(0, x, v) = 1
4πσxσy

(
1− Ax sin(kxx)− Ay sin(kyy)

)

(

e
− (vx−vd)

2

2σ2
x + e

− (vx+vd)
2

2σ2
x

)

e
− v2

y

2σ2
y ,

(7.18)

with kx = 2π
Lx

, ky = 2π
Ly

, the perturbation amplitudes Ax, Ay, the velocity drift vd and the

thermal velocities σx, σy. The domain is [0, Lx)× [0, Ly)× [−vmax, vmax)2.
Our aim is to develop 2d2v two-species simulations; so, here is such an example. It is a

generalization of the first test to the 2d2v framework; we use a 2d2v initial function for the ions
that was developed in [160]. We will take here vd = 2.4, Ax = 0.005, Ay = 0.25, σx = 0.5,
σy = 1, kx = ky = 0.2 together with vmax = 10.

Numerical results

We take here ε =
√

0.01. This leads to a more oscillatory behavior. We focus here on the electric
energy. On Figure 7.33, we give the electric energy for BSL using the 6-th order scheme, for
∆t = 0.02 and ∆t = 0.01. We remark that there is a lot of oscillations. We see that the results
are very similar, which is a mark of the fact that the scheme is converged in time. We then do
the comparison with other methods and numerical parameters. The same quantity is plotted
for other numerical parameters on Figures 7.34–7.38.

On Figure 7.34, we see that the result is equivalent with using the Strang scheme with
∆t = 0.0025.

On Figure 7.35, we see that the convergence is not complete when passing from a grid
32× 256× 32× 512 to a grid 32× 512× 32× 1024, which means that high resolution in y− vy
is needed.

On Figure 7.36, we see that on the contrary, 32 points in x seem sufficient, as the curve
for the 32 × 512 × 32 × 1024 and 64 × 512 × 32 × 1024 well match, and we see that going to
∆t = 0.005 in the Strang splitting case changes more the solution; so that it seems to be a little
better to stick to ∆t = 0.0025.

On Figure 7.37, we see that more clearly that high resolution in y− vy is needed: the grid
128 in y and 512 in vy is clearly not sufficient.

On Figure 7.38, we see simulations using a splitting first by species. The time step for the
ions is ∆ti = 0.1; for the electrons the time step is ∆te = 0.01; BSL (resp. PIC) is used for
the electrons on the left (resp. right) figure. The results are converged (they are compared to
a “reference” solution: BSL with 6-th order time scheme and ∆t = 0.01 on grid 32 × 512 ×
32× 2048). Thus, we validate the splitting by species using BSL for ions and BSL or PIC for
electrons, with sub-steps for the electrons. This opens the door to use specific PIC (or BSL)
schemes that are designed for capturing high oscillations (see [51]). On Figure 7.39, we compare
the total energy conservation between Strang and the 6-th order splitting; we remark that the
conservation is really improved with the 6-th order splitting, which is coherent with [93], where
such a splitting is also used for a single species. Then, on Figures 7.40–7.44, we give some 2d
plots.

On Figure 7.40, we see the x − vx cut for the electrons (left) and the ions (right). We note
that this picture does not change much with time; in particular, luckily, a two-stream instability
is here not developed, which permits to keep a resolution small in these directions.

On Figure 7.41, we see on the contrary, that for the y− vy cut for the electrons, very fine
structures appear; this confirms the fact that high resolution is here needed.

On Figure 7.42, we see a Landau damping behavior in for the y− vy cut for the ions.
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Figure 7.33 – Electric energy, 2d2v test case in (7.17) and (7.18): comparisons for 6-th order
scheme and ∆t = 0.01 versus ∆t = 0.02, on 32× 512× 32× 2048 grid with BSL.

On Figure 7.43, we see the time evolution of ρe =
∫

R2 fe(x, y, vx, vy)dvx dvy, and on Fig-
ure 7.44, the time evolution of ρi =

∫

R2 fi(x, y, vx, vy)dvx dvy. We see the rapid change of ρe

with respect to time; we remark also some structures in x and the amplitude of ρ− 1 is small.
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Figure 7.34 – Electric energy, 2d2v test case in (7.17) and (7.18): comparisons for 6-th order
splitting and ∆t = 0.01 (or ∆t = 0.02) Strang splitting with ∆t = 0.0025, on 32× 512× 32× 2048
grid with BSL.

Figure 7.35 – Electric energy, 2d2v test case in (7.17) and (7.18): comparisons between 32× 512×
32× 2048 grid and 32× 256× 32× 1024 grid with BSL, using Strang splitting with ∆t = 0.0025.
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Figure 7.36 – Electric energy, 2d2v test case in (7.17) and (7.18): comparisons between grids
32× 512× 32× 2048 and 64× 512× 32× 2048, with Strang splitting and ∆t = 0.005 or ∆t =
0.0025.

Figure 7.37 – Electric energy, 2d2v test case in (7.17) and (7.18): comparisons between 64× 512×
32× 2048 grid and 128× 128× 512× 512 grid with BSL, using Strang splitting with ∆t = 0.005.

Figure 7.38 – Electric energy, 2d2v test case in (7.17) and (7.18); splitting first by species ∆tions =
0.1, ∆telectrons = 0.01 (for the ions: BSL; for the electrons: BSL, left; PIC right), on grid 32 ×
512× 32× 2048
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Figure 7.39 – Total energy, 2d2v test case in (7.17) and (7.18): comparison between order 6, with
∆t = 0.1 and Strang, with ∆t = 0.01 on 32× 64× 32× 128 grid, with BSL.

Figure 7.40 – x-vx cut electrons (left) and ions (right), 2d2v test case in (7.17) and (7.18), BSL
method, at final time t = 100.
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Figure 7.41 – y-vy cut electrons at times 2, 4, 5, 10, 20, 50, 2d2v test case in (7.17) and (7.18), BSL
method.
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Figure 7.42 – y-vy cut ions at times 10, 20, 50, 100, 2d2v test case in (7.17) and (7.18), BSL method.

Figure 7.43 – ρ for electrons at time 44.3, 44.4, 2d2v test case in (7.17) and (7.18), BSL method.

Figure 7.44 – ρ for ions at time 50, 54, 2d2v test case in (7.17) and (7.18), BSL method.
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Chapter 8

The End

This chapter will now conclude the work shown in this thesis and show some possible future
directions.

First, Section 8.1 will show performance results of our different algorithms on a same archi-
tecture.

Then, Section 8.2 will give a summary of some important points from this thesis.
Finally, Section 8.3 will give some possible future work for Pic-Vert (future work for the

semi-Lagrangian implementation was already given in Chapter 6).

8.1 Three Years in Four Graphs

This section compares all the results from Chapter 4 and Chapter 5 on a same architecture. The
results presented in this section come from simulations run on different computers.

Our Inria team machine “icps-gc-6”. This machine features 2 sockets, and each of those
sockets is an Intel Xeon E5-2650 v3 @2.3 GHz (Haswell) with 16 GB of RAM, 2 memory chan-
nels, and 10 cores. Its theoretical memory bandwidth peak is 34 GB/s (only 2 memory channels
installed on a maximum of 41), its theoretical single precision floating-point operation peak is
736 GFlops/s. On this machine, we had access to gcc 6.2 and icc 17.0.02.

The Haswell nodes of the CINES supercomputer “Occigen”3 (2 106 nodes). Each node
features 2 sockets, and each of those sockets is an Intel Xeon E5-2690 v3 @ 2.6 GHz (Haswell)
with 64 GB of RAM, 4 memory channels, and 12 cores. Its theoretical memory bandwidth peak
is 68 GB/s, its theoretical single precision floating-point operation peak is 998 GFlops/s. On
this machine, we had access to icc 17.0.

Table 8.1 summarizes the architectural parameters of those machines. Because our PIC code
is memory-bound, the parameter that matters most is the memory bandwidth. In this chapter,
we used the hyper-threading capabilities of our architectures. On those two architectures, each
core is able to host two threads.

Table 8.2 presents the test case simulated to compare our algorithms in 3d, and Table 8.3
presents the one in 3d. The 2d test case is similar to the one presented in the previous chapters
(here we chose vth = 0.1), and the 3d one is exactly the same one as used previously.

The number of particles chosen for the simulations is the maximum possible for all our al-
gorithms on each architecture. Table 8.4 summarizes the memory requirements of our different
algorithms in 2d and 3d. For our simulations with chunks, we used a value of chunkSize that
enables to use as many particles as with SoA. As detailed in Chapter 5, we have two possible
algorithms with chunks. For the one which uses less memory (two bags per cell), a chunkSize of
256 was always possible. For the one which uses more memory (one bag per thread per cell),

1http://ark.intel.com/products/81705
2Thanks to https://software.intel.com/en-us/qualify-for-free-software/student
3https://www.cines.fr/calcul/materiels/occigen/configuration/

http://ark.intel.com/products/81705
https://software.intel.com/en-us/qualify-for-free-software/student
https://www.cines.fr/calcul/materiels/occigen/configuration/
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we were obliged to use chunkSize = 128 in 2d on icps-gc-6, to use chunkSize = 64 in 3d on Occi-
gen, and we were not able to use this algorithm in 3d on icps-gc-6 (chunkSize = 16 would have
worked but it is too low to have good performance). This table illustrates that the memory
gains thanks to our last algorithm are not worthless.

Figures 8.1–8.4 show roofline models of our algorithm on our test architectures, in 2d and
3d. Let us now analyze the data shown on those graphs.

Hyper-threading (HT). On those graphs, when hyper-threading is not shown for an algo-
rithm, it is because the performance do not change much (or is decreased) by using it. When
using SoA with 3 loops, with or without strip-mining, hyper-threading does not improves effi-
ciency. However, when using SoA with 1 loop or when using chunks, this technology becomes
useful.

Operational intensity. On those graphs, we see three different operational intensities for
our algorithms. The number of memory operations associated with our “SoA 3 loops” algo-
rithm was explained in Chapter 4, in Listings 4.27–4.30 on pages 85–87. The number of memory
operations needed for our algorithms with chunks was explained in Chapter 5, in Figure 5.12
on page 116 and in footnote 16 on page 125. For our algorithms with only 1 loop or with
strip-mining, the explanations are similar. The detail of those numbers is given in Table 8.5.

Figures 8.1 and 8.3 show the performance of our 2d algorithms. We see that in 2d, the SoA
layout for particles gives the best performance, if we use the strip-mining on the core loops.
The best operational intensity that can be attained with the particle representation chosen is
1.3. For this intensity:

• on icps-gc-6, the maximum number of Flops/s is 39 GFlops/s. We reach 64% of this
maximum.

• on Occigen, the maximum number of Flops/s is 75 GFlops/s. We reach 65% of this max-
imum.

Figures 8.2 and 8.4 show the performance of our 3d algorithms. We see that in 3d, the
chunk bags gives the best performance, if we use the algorithm with colors and with atomics
(Variant 2 in Table 5.3). The best operational intensity that can be attained with the particle
representation chosen is 2.9. For this intensity:

• on icps-gc-6, the maximum number of Flops/s is 87 GFlops/s. We reach 47% of this
maximum.

• on Occigen, the maximum number of Flops/s is 169 GFlops/s. We reach 44% of this
maximum.

Furthermore, many scientific articles show the efficiency of their implementations on a
“cold plasma” test case. It is, e.g., a test case where the time step is set to 0. This test case
gets rid of almost all the cache misses, because particles do not move at all: they always stay in
the same cell during the simulation. This is thus a test case which exhibits the maximum per-
formance of an implementation. As argued in Chapter 5, our performance results are relatively
independent from the particle velocities. The associated results are not pictured on the graphs.
However, they are of course a little better.

• on icps-gc-6, we reach 69% of the maximum performance in 2d and 52% in 3d.
• on Occigen, we reach 69% of the maximum performance in 2d and 46% in 3d.

Pic-Vert performance on a “cold plasma” test case.

The more we approach peak performance, the more difficult it becomes to grasp the last per-
cents that separate us from this maximum. We have seen in this thesis how to get performance
improvements thanks to loop transformation, data layouts, data structures and algorithms.
Grasping the last percents seems at least very challenging.
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icps-gc-6 Occigen HSW
Processor Intel Xeon E5-2650 v3 (Haswell) Intel Xeon E5-2690 v3 (Haswell)
RAM 16 GB 64 GB
#mem. channels 2 4
Memory bandwidth 34 GB/s 68 GB/s
#cores (#threads) 10 (20) 12 (24)
Clock frequency 2.3 GHz 2.6 GHz
Floating-point 736 GFlops/s 998 GFlops/s

Table 8.1 – Architectural parameters of one socket of our test machines.

Physical test case Linear Landau damping [5, Section 5.15], initial distribution
f (x, y, vx , vy, t = 0) =
(
1 + 0.01 cos

(
x
2

)
cos

( y
2

)) 1
0.02π exp

(

− v2
x+v2

y

0.02

)

Spatial grid [0; 4π)2 decomposed in 2562 cells, periodic boundaries
Other parameters Cloud-in-cell model [42], 100 iterations and ∆t = 0.1
Particle crossing:
averaged, per iteration

30% of the particles move 1 cell away, 0.0000082% move 2 cells
away

Table 8.2 – 2d test case for comparison.

Physical test case Linear Landau damping [5, Section 5.15], initial distribution
f (x, y, z, vx , vy, vz, t = 0) =
(
1 + 0.01 cos

(
x
2

)
cos

( y
2

)
cos

(
z
2

)) 1
(2π)3/2 exp

(

− v2
x+v2

y+v2
z

2

)

Spatial grid [0; 4π)3 decomposed in 643 cells, periodic boundaries
Other parameters Cloud-in-cell model [42], 100 iterations and ∆t = 0.05
Particle crossing:
averaged, per iteration

49% of the particles move 1 cell away,
0.0015% of the particles move 2 cells away

Table 8.3 – 3d test case for comparison.

Algorithm
Memory usage, Largest N, in millions

in bytes icps-gc-6 Occigen

SoA, out of place except for icell (28 + 24) · N 250 1 100
One chunk bag / thread / cell (size 128) (

24 + 64
chunkSize

)
· N + C1

280 2 000
(size 256) 0 1 600

Two chunk bags / cell (size 256)
(
24 + 64

chunkSize

)
· N + C2 530 2 300

SoA, out of place except for icell (40 + 36) · N 190 750
(size 32) 70 1 200

One chunk bag / thread / cell (size 64)
(
36 + 64

chunkSize

)
· N + C1 0 830

(size 128) 0 120
Two chunk bags / cell (size 256)

(
36 + 64

chunkSize

)
· N + C2 270 1 500

Table 8.4 – Memory usage of our PIC implementations. N denotes the number of particles, C2 ≈
4 ·nbCells ·memoryOf(chunk), enhanced from C1 ≈ 2 ·nbThreads ·nbCells ·memoryOf(chunk). Top:
2d with a grid of size 256× 256. Bottom: 3d with a grid of size 64× 64× 64.
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Figure 8.1 – Analysis of performance in the roofline model. 2d test case in Table 8.2 with 250 mil-
lion particles, on icps-gc-6. Results with hyper-threading in blue.
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Figure 8.2 – Analysis of performance in the roofline model. 3d test case in Table 8.3 with 175 mil-
lion particles, on icps-gc-6. Results with hyper-threading in blue.
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Figure 8.3 – Analysis of performance in the roofline model. 2d test case in Table 8.2 with 1 bil-
lion particles, on Occigen. Results with hyper-threading in blue.
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Figure 8.4 – Analysis of performance in the roofline model. 3d test case in Table 8.3 with 700 mil-
lion particles, on Occigen. Results with hyper-threading in blue.
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Algorithm
# floating-point

operations
Memory moved,

in bytes
Operational

intensity

SoA, 3 loops 62 44 + 44 + 12 + 68 · 4
100 0.6

SoA, strip-mining 62 28 · 2 + 68 · 4
100 1.1

SoA, 1 loop 62 28 · 2 + 68 · 4
100 1.1

Chunk bags 62
(
24 + 64

chunkSize

)
· 2 1.3

SoA, 3 loops 209 64 + 52 + 16 + 84 · 4
100 1.5

SoA, strip-mining 209 64 + 56 + 84 · 4
100 1.7

SoA, 1 loop 209 40 · 2 + 84 · 4
100 2.5

Chunk bags 209
(
36 + 64

chunkSize

)
· 2 2.9

Table 8.5 – Operational intensities of our PIC implementations. The numbers in the second and
third column are given per particle per time step. The SoA implementations perform a sorting
every 20 iterations, hence 4 sortings on 100 iterations. In 2d, the strip-mining is on the 3 loops,
and in 3d on the two last loops (update-positions and accumulate). Top: 2d. Bottom: 3d.

8.2 Takeaways

In Chapter 4, a lot of technical work was described. Suppose now that one is to optimize his or
her implementation. What lessons can be learned from our experiments?

“ Traduttore, traditore.4

Italian expression ”Translation. One of our first works was to translate a Fortran code to a C code. Apart
from the usual indices problems (Fortran arrays are indexed from 1 to n, C arrays are indexed
from 0 to n− 1), the bug which was the most annoying to identify was related to the pseudo-
random generator. As shown in Section 2.3, the native Fortran generator random_number is
“good enough” for PIC simulations, but not the native C generator rand. We thus recommand
to be really careful when translating a code from one language to another. A lot of frustration
can come when a library has different APIs in two languages (e.g., HDF5), but it is a lot more
frustrating to identify problems when the APIs are the same whereas the behaviors are not.

Data layouts. On modern computer architectures, the structure of arrays layout is required
for efficient vectorization. This optimization is not hard to implement, but it may take some
time without the appropriate search and replace tools. If an implementation would benefit
from vectorization, we would highly recommend to implement this optimization. Practical
ways to use vector instructions were presented in Section 4.3.4, which are generic enough to
be used in many situations. Be aware that vectorization reports, which are extremely useful,
highly depend on the compiler.

Performance metrics. To better understand the behavior of one’s implementation, a first
useful step is to look at the roofline model [180]. To understand the floating-point operations
performed and the memory moved, one possibility is to use tools such as Intel VTune Amplifier
if using Intel architecture (this is what is done in, e.g., PICADOR [81]) or the CUDA Metric API
from CUDA 5.5 if using GPUs with CUDA code (this is what is done in, e.g., PIConGPU [49]).
Another possibility is to manually count the operations performed and the memory accesses
inside the code (this is what is done in, e.g., GTC [88] and in the Stream benchmark [162]). In
this work, we also counted manually the operations and memory moved. In the process of
doing it, we identified common subexpressions that, when factorized, improved performance

4Each translator is a traitor. (translation by this manuscript’s traitor)
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(≈ 1.5%). We also better understood the behavior of our implementation. Thus, we have no
choice but to advise others to do so as well.

Once the metrics are well understood, one should now know if his or her implementation
is memory bound or compute bound. This is crucial to understand the scalability on multi-core
architectures. Modern architectures usually have less memory channels than cores. Thus, if an
implementation is memory bound and efficient, it is not expected to scale ideally with respect
to the number of cores. When first looking at the scalability of Pic-Vert on icps-gc-6, we had
a speedup of 3.4 on 10 cores with respect to 1 core. We had a hard time understanding this
behavior until we saw that we had only 2 memory channels. For optimization matters, it is
thus really important to understand it, of course, but also to understand the hardware that will
run it.

Import our optimizations inside another PIC implementation. Let us note that the crucial
optimizations presented in Chapter 4 (space-filling curves, strip-mining) are easy to imple-
ment. For the space-filling curves, the hard work was to design the correct curve and to test the
different possible implementations. Once this work is finished, there is just a macro to copy/-
paste – provided that you use the “index plus offset” representation (if not, this change is more
time-consuming). For the strip-mining: as already stated, when looking at the performance
results and analyzing them correctly, this transformation is really natural and it is really easy to
implement, compare Listing 4.34 and Listing 4.35 on page 98. The only important thing was to
test different ways of applying this transformation. Our first idea (apply it on the 3 steps) did
not work in 3d, but it worked by applying it on the 2 last steps only. This was not expected at
first, but it underlines the importance of experiments on top of an accurate theoretical analysis.

Debugging. Most of our performance results are obtained thanks to icc. However, for
debugging purposes, we used only gcc. We present here what we used for debugging, and in
which situations it was useful:

• Test parts of code independently.
• Add printfs in the code. This was our main debugging tool, in every situation.
• Compile with -fsanitize=undefined or -fsanitize=address to get out of bounds error

on arrays.
• Compile with -Wall to get all usual warnings. And remove them.
• Compile with -Wfloat-conversion. This helps locating errors from automatic casts. An

example of such errors is using abs from <math.h> instead of fabs for real numbers (there
would be a hidden cast to an integer without this compilation option).

• Compile with -Wmissing-field-initializers. This helps locating errors coming from
fields not initialized in structures. It is perfectly legal to omit field structures, and they
will be set to 0. But sometimes, it is not what was intended when writing the code.

• When everything else fails to an ennoying segfault whose line cannot be located:

– compile with -g;
– run the executable and locate in the standard error the offset producing the segfault

(in hexadecimal, e.g., 0x418287);
– execute addr2line -e /path/to/buggy_executable.out offset.

8.3 Perspectives

Particle representation. During this work, we sticked to the “index plus offset” representation
of particles. This representation is a little less precise than using plain doubles for positions, but
uses doubles for velocities. It would be very interesting to compare the precision of simulations
using doubles to the precision of simulations using floats. Whenever floats are sufficiently
precise for velocities, it could be more efficient to use them, to reduce the memory footprint of
a particle, hence to reduce the memory bandwidth.
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Particle shapes. As shown in the previous section, Pic-Vert achieves close to optimal
performance results on modern CPU architectures. But those results were obtained with the
Cloud-in-Cell model. It would be interesting to see what can be reached with higher inter-
polation levels. When the interpolation level rises, it means more computation but also more
accesses in the E and ρ arrays.

Distributed memory parallelism. In this work, we focused on multi-core and SIMD par-
allelism. In future work, it would be great to extend our algorithm with a layer of domain
decomposition, using MPI communications. One critical aspect is the exchange of particles
crossing domain boundaries. We speculate that chunks could be used as buffers for emission
and reception of particles reaching the cells at the frontier of a domain. These chunks could
then be merged, at the end of the time step, with the locally-processed chunks. The flexibility
offered by chunks might be helpful for dealing with dynamically-sized domains.

Architectures. Furthermore, it would be interesting to adapt our algorithm to target archi-
tectures with larger number of cores, such as Graphics Processing Unit (GPU) or Many Inte-
grated Core (MIC). We think that the organization in chunks could help addressing the issue
of load balancing, which is critical on these architectures (e.g., [68]).

Language. During this work we used C for the implementation. We tried our best to make
our code readable and easy to maintain, and we hope that the result, which can be downloaded
at http://www.barsamian.am/Pic-Vert/, is not too far from our goal. However, we reached a
point where, because of a lack of modularity in the language, we copied/pasted a lot of code
when testing the different data structures in different dimensions. If our implementation is
to be used in the long term, it would probably be a good idea to port it, e.g., to C++ and use
templates to factorize more code.

Other home trees for Pic-Vert? Last but not least, we hope that (parts of) our implemen-
tation will be used by other scientists. We devoted a lot of time to this implementation, proved
that it is more efficient that other PIC implementation (see Tables 3.1–3.3 in Section 3.3), and we
thus think that it would be good to use some of our ideas in other PIC implementations.

http://www.barsamian.am/Pic-Vert/
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Appendix A

Notations

A.1 Some Useful Mathematical Notations

Differentiation. In this manuscript, we are considering two or three dimensions. When we

need to derive a function with respect to a vector, and not a scalar, we do not use
d f (x)

dx
, but

we use the ∇ operator instead (pronounce “nabla”): ∇ #„x f ( #„x ). It is the same concept, but in
higher dimensions.

Numbers. Throughout this manuscript, we use the dot (.) for the decimal marker (to sepa-
rate the integer part from the decimal part of numbers). In French, the comma (,) is commonly
used, while it can be confusing because in English the comma is commonly used to separate
groups of three digits to facilitate reading. To make this manuscript clear in both languages,
following [198, Résolution 10], we do not use commas in numbers — neither between groups
of three digits (we use spaces instead), neither as a decimal marker (we use the dot instead).
In some published articles, we used the comma between groups of three digits. We hope our
French compatriots will forgive us.

Symbols. When reading mathematical documents, it can happen that the same symbol is
used for multiple reasons. With enough knowledge, the meaning of the symbol will be straight-
forward given the context. But who can say that he was never a beginner? It also happens in
theater that a same actor plays different roles (theater companies have similar problems than
researchers regarding fundings, which could explain that). In this manuscript, the letter ∆ will
play different roles. When encountering ∆φ, it should be read as “Laplacian of phi”, because it
represents the Laplace operator:

∆φ =
∂2φ

∂x2 +
∂2φ

∂y2 +
∂2φ

∂z2

When encountering ∆t, it should be read as “delta tee”, because it represents a variation
(here, in time).

Vector product (or cross product). In the French part of this manuscript, we use the French
notation #„a ∧ #„

b for the vector product in 3d. In the English part of this manuscript, we use
the English notation #„a × #„

b instead. Too bad this product is called “cross product” and not
“reverse vee product” :-)

A.2 Some Useful Computer Science Notations

Array notation. Throughout this manuscript, whenever we have to refer to indices of objects in
an array of N objects, those indices will be in {0, 1, . . . , N − 1}. This is the standard C notation
(which is the notation we have in buildings, where we have the ground floor of index 0, then
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first floor, etc.). If you come from Fortran, where indices start at 1 rather than 0, this might
puzzle you a little bit at first (which is the notation in buildings e.g., in Russia, where the floors
start at 1 — what we call ground floor is called first floor in Russia, what we call first floor is
called second floor in Russia, and so on).

Complexity. To give an idea of the time needed by a specific algorithm, there exist specific
notations [10, Sect. 3.1]. Suppose that an algorithm takes as input data of size N (e.g., sort a list
of N elements; find the shortest path among N cities. . . ). With f being a function, this algorithm
is said to have complexity:

• o( f (N)) if, when N grows, the number of operations needed for the algorithm is really
small compared to f (N).

• O( f (N)) if, when N grows, the number of operations needed for the algorithm is smaller
than c · f (N), where c is a constant.

• Ω( f (N)) if, when N grows, the number of operations needed for the algorithm is greater
than d · f (N), where d is a constant.

• Θ( f (N)) if this algorithm has complexity both O( f (N)) and Ω( f (N)).

Memory. In the French part of this manuscript, we use the French notation Go (gigaoctet).
In the English part of this manuscript, we use the English notation GB (gigabyte). The most
little piece of information on a computer is a bit (binary digit, whose value can thus be 0 or 1).
A byte is 8 of those bits (this definition is more natural in French with the prefix “oct”). The
prefix giga means we take 109 of those bytes. Both notations are commonly used to represent
in fact a GiB (gibibyte). A gibibyte is 230 bytes. This approximation is common in computer
science, because 210 = 1 024 ≈ 1 000.

The memory is always measured for the RAM (Random Access Memory). We do not care
about ROM (Read Only Memory), which is the size of the data that can be stored on the disk,
but we care only about the size of the dynamic memory.
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Supercomputers. In this thesis, we had access to the supercomputers Curie1, Marconi2, and
Occigen3. We are grateful to the French and European grants that enabled us to use them.
Part of this work was granted access to the HPC resources of TGCC under the allocation 2015-
T2016067580 made by GENCI. Part of this work was granted access to the HPC resources of
CINES under the allocation 2017-A0030510318 made by GENCI. Part of this work has been car-
ried out within the framework of the EUROfusion Consortium and has received funding from
the Euratom Research and Training Program 2014–2018 under Grant Agreement No. 633053.
The views and opinions expressed herein do not necessarily reflect those of the European Com-
mission.

There exist a worldwide ranking of supercomputers: https://www.top500.org/.

Parallel languages. Following the work of many other colleagues in the scientific com-
puting community, we focused here on the OpenMP [182] language extension (for C, C++ and
Fortran) for shared memory parallelism. There are other alternatives, e.g., POSIX Threads
(man pthreads), C11 threads [17, Section 19], Cilk (Plus) [186].

We also used MPI [184] for distributed memory parallelism.

Design of this manuscript. For the rendering of this manuscript, we used:

• LATEX for the general rendering,
• Palatino Roman (regular text), Computer Modern Typewriter (code examples), Pazo

Math (mathematical equations) and Baskerville (Pic-Vert logo) for the fonts,
• gnuplot [191] for most graphs,
• the colormap “plasma” from [171] for Figures 4.3–4.6 and 4.25–4.28 on pages 68 and 90,
• VisIt [187] to output 2d visualizations of the particle density and of the charge density in

Chapter 7.

1http://www-hpc.cea.fr/fr/complexe/tgcc-curie.htm
2https://www.cineca.it/en/content/marconi
3https://www.cines.fr/calcul/materiels/occigen/
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Annexe C

Introduction (en français)

Tout au long de cette thèse, notre travail a consisté en des implémentations efficaces de simula-
tions numériques dans le domaine de la physique des plasmas. Ce chapitre d’introduction va
donner une vue d’ensemble des notions physiques et mathématiques qui sont au cœur de ces
implémentations. Certaines des notations utilisées peuvent être difficiles à comprendre, n’hé-
sitez pas à vous reporter au Chapitre A.

Tout d’abord, la Section C.1 motive le besoin en simulations dans le domaine de la physique
des plasmas, explique ce qu’est un plasma, et donne un aperçu de la physique qui s’y déroule.

La Section C.2 présente ensuite les équations mathématiques qui gouvernent ces simula-
tions, ainsi que des méthodes pour les résoudre numériquement.

La Section C.3 introduit enfin ce qui est nécessaire en termes informatiques pour com-
prendre les optimisations qui ont été apportées tout au long de cette thèse.

C.1 Quelques notions de physique

C.1.1 Énergie

“ Today our planet is thoroughly wedded to fossil fuels in the form of oil, natu-
ral gas, and coal. Altogether, the world consumes about 14 trillion watts of power,
of which 33 percent comes from oil, 25 percent from coal, 20 percent from gas, 7
percent from nuclear, 15 percent from biomass and hydroelectric, and a paltry .5
percent from solar and renewables.1

M. Kaku [24, Chapter 5] ”La maîtrise de l’énergie n’est pas un phénomène nouveau dans l’histoire. Nous avons fait
travailler d’autres animaux pour nous, exploité des premières sources d’énergie renouvelable
(les moulins à vent, les roues à aube. . .), avant de découvrir de nouvelles manières d’utiliser les
ressources énergétiques de notre planète : le charbon, puis le pétrole.

Cela dit, ces nouvelles sources d’énergie que nous utilisons directement ou indirectement
tous les jours ont une nouveauté par rapport aux autres : elles ont un impact massif sur
notre planète. Les rencontres internationales (par exemple, le protocole de Kyoto en 1997), les
groupes de recherche internationaux (par exemple, le GIEC — Groupe d’experts Intergouver-
nemental sur l’Évolution du Climat, http://www.ipcc.ch) nous expliquent les désastres cli-
matiques vers lesquels on se dirige si l’on continue à se comporter de la sorte, et essayent de

1“Aujourd’hui, notre planète est très fortement liée aux combustibles fossiles sous la forme de pétrole, de gaz
naturel, et de charbon. En tout, le monde consomme à peu près 14 billions de watts d’énergie, dont 33 pourcents
proviennent du pétrole, 25 pourcents du charbon, 20 pourcents du gaz, 7 pourcents du nucléaire, 15 pourcents de la
biomasse et de l’hydroélectrique, et une quantité dérisoire de 0.5 pourcent du solaire et des renouvelables.” M.
Kaku (traduction par l’auteur de ce manuscrit)

http://www.ipcc.ch
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montrer des chemins à suivre si l’on veut éviter un réchauffement climatique intenable, voir
par exemple la Figure C.1.

Aujourd’hui, de nombreuses personnes vantent les mérites de l’énergie “verte” définie
comme celle donnée par le vent et le soleil : les éoliennes, les panneaux solaires. . . Ces éner-
gies pourraient être notre futur, parce qu’elles relâchent moins de dioxyde de carbone (CO2).
Cela dit, pour ces énergies il existe encore des problèmes de disponibilité (nous ne pouvons
pas contrôler le vent et avons quand même besoin d’énergie quand il ne souffle pas) et en sto-
ckage (les batteries actuelles ne sont pas assez puissantes pour stocker l’énergie produite ; le
pompage-turbinage est une technique de stockage sans batteries, mais en très petite quantité).
Réduire les émissions de CO2 avec les énergies renouvelables n’est possible que si l’on réduit
en parallèle notre consommation de combustibles fossiles. Malheureusement, des centrales à
charbon (qui relâchent beaucoup de CO2) sont couramment utilisées pour produire de l’énergie
lorsque les éoliennes et les panneaux solaires n’en produisent pas (par exemple, la nuit).

Une source d’énergie qui existe aujourd’hui et qui a également la propriété de relâcher
moins de CO2 que les combustibles fossiles est l’énergie produite par les centrales nucléaires,
grâce à la fission atomique. Nous devons cela dit souligner que les centrales électriques sont
un sujet polémique : les accidents nucléaires de Three Mile Island (1979), de Tchernobyl (1986)
et de Fukushima (2011) ont changé notre point de vue sur cette énergie. Certaines erreurs po-
litiques n’ont pas non plus aidé à rendre cette énergie acceptable. On peut par exemple citer
les nombreux pots-de-vin à des hommes politiques dont les pays contiennent des ressources
d’uranium [196], ou bien les grandes quantités d’argent dépensées pour acheter des mines
d’uranium desquelles rien ne peut être extrait2, etc.

Bien que ce soit probablement de nos jours l’une des énergies qui relâche le moins de CO2,
il y a tout de même un problème de taille : en produisant de l’énergie avec la fission, des
“déchets nucléaires” sont créés, dont les durées de demi-vie peuvent dépasser 200 000 ans.
Des recherches sont en cours pour expliquer avec des symboles clairs, aux endroits où on les
stocke, que ces déchets sont dangereux, afin que nos descendants dans plusieurs milliers d’an-
nées comprennent ces symboles [129]. Un autre défi est de réellement construire de tels lieux
capables de stocker ces déchets nucléaires pendant tant de temps [154].

“ Les scientifiques annoncent ainsi l’avènement des piles à combustible, de la
fusion par laser ou par confinement magnétique, des véhicules à hydrogène ou à
sustentation magnétique, et même des centrales solaires placées en orbite autour de
la Terre. [24, Chapter 5]

G. Pitron [199] ”Face à ces problèmes d’énergie, les chercheurs essayent de mettre à jour de nouveaux
moyens de produire de l’énergie. L’un de ces moyens est une application majeure de nos tra-
vaux : la fusion thermonucléaire contrôlée. La fusion est une réaction qui peut être vue comme
l’inverse de la fission. La fission crée de l’énergie en “cassant” de gros noyaux (par exemple,
d’uranium) pour en créer de plus petits. La fusion crée de l’énergie en “fusionnant” de petits
noyaux (par exemple, d’hydrogène) pour en créer de plus gros. Ce point est déjà une amélio-
ration par rapport à la fission, car il est bien plus simple de se procurer de l’hydrogène que de
l’uranium : on peut produire du deutérium et du tritium (les isotopes d’hydrogène dont on a
besoin) au lieu d’avoir besoin de l’extraire de notre sous-sol.

En produisant de l’énergie avec la fusion, aucun déchet nucléaire direct n’est créé. Cela dit,
les neutrons massivement chargés d’énergie qui sont créés vont irradier la structure environ-
nante, et c’est toujours un sujet de recherche de réussir à apprivoiser ce phénomène. Aujour-
d’hui, créer de l’énergie grâce à la fusion est donc un défi majeur. Le projet international ITER3,
situé à Cadarache (France), s’est fixé ce but.

2https://fr.wikipedia.org/wiki/UraMin
3International Thermonuclear Experimental Reactor, “Le chemin” (en latin) : http://www.iter.org

https://fr.wikipedia.org/wiki/UraMin
http://www.iter.org
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“[After setting your car on fire] Listen, your car’s temperature has changed before.”

Crédits — Randall Munroe, https://xkcd.com/1732/ ; Sources — Shakun et al. (2012) [168],
Marcott et al. (2013) [161], Annan and Hargreaves (2013) [131], HadCRUT4 (https://www.meto
ffice.gov.uk/hadobs/hadcrut4/), GIEC (http://www.ipcc.ch/).

FIGURE C.1 – Chronologie de la température moyenne terrestre.

https://xkcd.com/1732/
https://www.metoffice.gov.uk/hadobs/hadcrut4/
https://www.metoffice.gov.uk/hadobs/hadcrut4/
http://www.ipcc.ch/
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FIGURE C.2 – Le tokamak d’ITER — vue d’artiste. Image utilisée avec l’aimable accord d’ITER

Les projets comme ITER sont très coûteux. Avant d’utiliser une machinerie aussi complexe
qu’un tokamak4 de 29 m× 28 m — voir la Figure C.2 — nous devons savoir ce qu’il y a à l’inté-
rieur et comment cela se comporte.

“ La fusion est prometteuse, mais ne pourra guère être industrialisée avant la
fin du XXIe siècle.

B. Barré [192, Chapter 13] ”Avant d’expliquer ce qui se trouve dans le gros doughnut de la Figure C.2, nous devons
reconnaître que la fusion ne pourra probablement pas nous fournir d’énergie pour une utili-
sation grand public avant la fin du siècle. Ainsi, même si nous pensons que c’est une bonne
idée d’investir notre temps et notre argent dans cette source prometteuse d’énergie, nous de-
vons également changer notre mode de vie — au lieu de le considérer “non négociable” — afin
d’utiliser moins d’énergie jusqu’alors. Finissons cette section sur une note optimiste et parions
sur le fait que nous ferons des choix politiques courageux dans la direction d’un monde plus
raisonnable, où la croissance économique ne sera plus notre but principal.

C.1.2 Plasma

“ This reminds [Langmuir] of [...] the way blood plasma carries around red
and white corpuscles and germs. So he proposed to call our ‘uniform discharge’ a
‘plasma’.5

H. M. Mott-Smith [164] ”Pour produire de l’énergie grâce à la fusion, l’idée du projet ITER est de créer un plasma à
l’intérieur d’un tokamak, puis de contenir ce plasma à l’intérieur avec un champ magnétique
élevé. Le plasma est le quatrième état de la matière, et on pense qu’il forme 99% de la masse de
l’univers visible. La matière atteint cet état à de très hautes températures (> 10 000 K). À ces
températures, les particules (ions et électrons) se comportent différemment. Il y a du plasma,

4Токамак: тороидальная камера с магнитными катушками (une chambre toroïdale avec des bobines
magnétiques)

5“Cela rappela [à Langmuir] [...] la manière dont le plasma sanguin conduit les globules blancs et rouges ainsi
que les germes. Il proposa donc d’appeler notre ‘décharge uniforme’ un ‘plasma’.” H. M. Mott-Smith (traduc-
tion par l’auteur de ce manuscrit)
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par exemple, dans un éclair, dans un tube de néon, dans le soleil. Maîtriser la fusion thermo-
nucléaire contrôlée n’est donc rien d’autre que de mettre le soleil dans un doughnut. On peut
trouver plus d’informations sur le plasma et ses applications sur http://www.plasmas.org.

Pour comprendre comment se comporte un plasma, nous devons étudier les particules qui
y résident, et donc nous devons traquer leurs positions spatiales #„x = (x, y, z) ∈ R

3 et leurs
vitesses #„v = (vx, vy, vz) ∈ R

3 au cours du temps. Pour traquer les particules, il y a essentielle-
ment trois modèles en physique des plasmas :

• le modèle à N corps : dans ce modèle, nous suivons toutes les N particules, en prenant en
compte toutes les interactions créées par chaque couple de particules, ce qui implique
donc Θ(N2) interactions. Ce modèle est le plus précis. Il existe des formules pour N = 2,
mais ce problème requiert des approximations dès que N = 3. Malheureusement, à cause
de la complexité de ce modèle, nous devrons peut-être attendre les prochains ordinateurs
quantiques pour pouvoir utiliser cette méthode efficacement (dans un plasma avec N >

1010 particules, il y a plus de 1020 = 100 000 000 000 000 000 000 interactions).

• le modèle cinétique : plutôt que de suivre chaque particule, nous étudions la densité de par-
ticules f (une fonction de sept variables : trois pour les positions, trois pour les vitesses, et
une pour le temps), qui donne la probabilité de présence de particules autour d’un certain
temps, d’une certaine position et d’une certaine vitesse. Bien sûr les différentes espèces de
particules dans le plasma ont différents impacts sur le comportement, donc nous devons
suivre une fonction de densité par espèce. Habituellement, nous avons des électrons et
un type d’ions, donc nous devons suivre fe (pour les électrons) et fi (pour les ions).

• le modèle fluide : ce modèle peut être utilisé lorsque la fonction de densité f respecte cer-
taines propriétés. Nous pouvons alors résoudre des équations un peu moins coûteuses,
qui donnent une vue macroscopique du plasma, plutôt qu’une vision microscopique.

Dans cette thèse, nous nous plaçons dans le modèle cinétique : nous résolvons numérique-
ment le système d’équations Vlasov–Poisson, voir la Section C.2.1. Ces équations sont résolues
dans l’espace des phases (un espace à six dimensions : trois pour les positions, trois pour les vi-
tesses). Parfois il est possible d’utilise des modèles simplifiés avec moins de dimensions. Par
exemple dans notre thèse, nous avons simulé des cas tests dans un espace des phases 1d1v
(1 dimension pour les positions, 1 dimension pour les vitesses : 2 dimensions au total), mais
aussi en 2d2v, 2d3v, et 3d3v.

C.2 Quelques notions mathématiques

C.2.1 Les équations à résoudre

“ [...] вследствие большой массы ионов в сравнении с электронами можно их
перемещением пренебречь, т.е. считать ионы фактически неподвижными6

А. А. Власов [178, Section 2] ”L’équation principale que nous devons résoudre est due à Vlasov [178, Equation II]. Elle
peut être reformulée de la sorte : la fonction de distribution f est conservée le long des trajec-
toires des particules qui sont déterminées par le champ électrique moyen [35, Section 2.1]. Dans

le cas non-relativiste, cela s’exprime par le fait que
d f ( #„x , #„v , t)

dt
= 0, ce qui donne l’équation

suivante :
6“[...] étant donnée la masse importante des ions comparée à celle des électrons, nous pouvons négliger leurs

déplacements, i.e., nous pouvons quasiment considérer que les ions sont immobiles” A. A. Vlasov (traduction
par l’auteur de ce manuscrit)

http://www.plasmas.org
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d #„x

dt
︸︷︷︸

#„v

·∇ #„x f +
d #„v

dt
︸︷︷︸

#„a

·∇ #„v f +
dt
dt
︸︷︷︸

1

∂ f

∂t
= 0 (C.1)

Vlasov a également remarqué que la seule force qui agit sur les particules est la force élec-
tromagnétique, aussi appelée la force de Lorentz :

#„

F ( #„x , t) = q(
#„

E ( #„x , t) + #„v (t) ∧ #„

B( #„x , t)) (C.2)

Avec les notations suivantes :

•
#„

E ( #„x , t) : le champ électrique

•
#„

B( #„x , t) : le champ magnétique

La seconde loi de Newton indique que, dans le cas non-relativiste, la somme des forces est
égale à la masse multipliée par l’accélération :

∑
#          „

forces = m · #„a

Cette loi mise ensemble avec (C.2) implique que #„a =
q

m
(

#„

E + #„v ∧ #„

B). En remplaçant #„a

par cette valeur dans (C.1), nous obtenons l’équation de Vlasov que nous allons utiliser tout au
long de cette thèse, voir (C.3).

∂ f

∂t
+ #„v · ∇ #„x f +

q

m
(

#„

E + #„v ∧ #„

B) · ∇ #„v f = 0 (C.3)

Cette équation est couplée avec les quatre équations de Maxwell qui permettent de déduire
les champs auto-cohérents

#„

Es(x, t) et
#„

Bs(x, t), voir (C.4).






div
#„

Bs =
#„

0 Maxwell–Thomson

rot
#„

Es = −
∂

#„

Bs

∂t
Maxwell–Faraday

div
#„

Es =
ρ

ǫ0
Maxwell–Gauss

rot
#„

Bs = µ0

(

#„

J + ǫ0
∂

#„

Es

∂t

)

Maxwell–Ampère

(C.4)

Avec les notations :

• ǫ0, µ0 : permittivité du vide et perméabilité magnétique du vide, liées à la vitesse de la

lumière : c =
1√

ǫ0 · µ0

• ρ( #„x , t) = q
∫

f ( #„x , #„v , t)d #„v : densité volumique de charge électrique

•
#„

J ( #„x , t) = q
∫

f ( #„x , #„v , t) #„v d #„v : densité de courant

Dans cette thèse, il n’y a aucun champ électrique externe. Dans certains cas, il n’y a aucun
champ externe, ce qui veut dire que les champs sont exactement les champs auto-cohérents :
#„

E ( #„x , t) =
#„

Es(
#„x , t) et

#„

B( #„x , t) =
#„

Bs(
#„x , t). Dans d’autres cas (comme dans le tokamak du projet

ITER), il y a un champ magnétique externe
#„

Be(
#„x , t), ce qui veut dire que

#„

B( #„x , t) =
#„

Bs(
#„x , t) +

#„

Be(x, t).
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Dans certains cas, nous pouvons simplifier les équations de Maxwell : nous nous plaçons
dans l’hypothèse simplificatrice que || #„v || ≪ c, qui implique que nous pouvons négliger la
densité de courant et le champ magnétique. Il ne nous reste qu’une seule équation à la place de
quatre, une équation de Poisson :

−∆ #„x φ =
ρ

ǫ0
où

#„

E ( #„x , t) = −∇ #„x φ( #„x , t)

La plupart du temps, cette thèse se focalisera sur le système Vlasov–Poisson, dans les cas
où :

• il n’y a aucun champ externe

• le champ magnétique auto-cohérent est négligé

• les ions sont supposés immobiles (et neutralisent la charge), donc nous ne simulons que
des électrons de charge q = −e (où e est la charge élémentaire)

Cela donne le système d’équations (C.5).






∂ f

∂t
+ #„v · ∇ #„x f +

q

m

#„

E · ∇ #„v f = 0 Vlasov

−∆ #„x φ =
ρ

ǫ0

(

=
q

ǫ0

(∫

f ( #„x , #„v , t)d #„v − 1
))

Poisson
(C.5)

De plus, dans cette thèse nous travaillons dans un monde adimensionné où e = m = ǫ0 = 1
(donc q = −1). Parfois, nous aurons besoin d’ajouter un champ magnétique externe constant,
parfois nous simulerons à la fois les électrons et les ions, et nous devrons donc mettre à jour le
système en fonction.

C.2.2 Approximations numériques

“ On pourroit aussi construire une table des différences premières & l’employer
seule. [...] [L]e procédé est aussi exact que la méthode des secondes différences,
mais il est moins commode. Ce qui vient en partie de ce que [...] pour les différences
premières il faut les prendre dans la table subsidiaire avec (u + 1

2 du).

J.-B. Delambre [142, Article X] ”Nous rappelons qu’il est difficile de prouver l’existence de solutions au système général de
manière rigoureuse. Utilisons la notation f (t) = { f ( #„x , #„v , t) | ( #„x , #„v ) ∈ espace des phases}, qui
représente toutes les valeurs de f au temps t. Nous n’avons donc pas de formule donnant f (t)
pour tout t.

Schémas numériques

Nous utilisons une méthode numérique pour obtenir des approximations de la solution :

• f (0) est connue (c’est la condition initiale)
• on choisit un ∆t “petit” (le pas de temps) et n (le nombre de pas de temps)
• on déduit f ∗(∆t), une approximation de f (∆t), à partir de f (0)
• puis f ∗(2∆t), une approximation de f (2∆t), à partir de f ∗(∆t)
• puis f ∗(3∆t), une approximation de f (3∆t), à partir de f ∗(2∆t)
• . . .
• et enfin f ∗(n∆t), une approximation de f (n∆t), à partir de f ∗((n− 1)∆t)
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Euler a proposé un schéma numérique [13, Part I, Section II, Chapter VII, Problem 85] dont
nous donnons ici l’idée si on travaille avec des fonctions de R dans R. L’inconnue est f ; nous
connaissons g, une équation différentielle f ′(t) = g(t), et f (a) ; nous voulons connaître f (b).
“Suffisamment proche” de n’importe quelle valeur x, f se comporte comme une fonction affine
(sa dérivée), c’est-à-dire que pour x ∈ [a; b] et pour de petites valeurs de h,

f (x + h) = f (x) + h · f ′(x) +O(h2) (Série de Taylor au premier ordre) (C.6)

Avec n étapes de taille ∆t = b−a
n , on peut obtenir une bonne approximation de f (b), en

calculant :







f ∗
(

a + b−a
n

)

= f (a) + b−a
n · g(a)

∀2 ≤ k ≤ n, f ∗
(

a + k · b−a
n

)

= f ∗
(

a + (k− 1) · b−a
n

)

+ b−a
n · g

(

a + (k− 1) · b−a
n

)

Le schéma d’Euler est une méthode de premier ordre : l’erreur est au plus proportionnelle
à ∆t7. Un schéma numérique plus précis (de second ordre) est la méthode saute-mouton, qui
a été (re)découverte de nombreuses fois, voir par exemple, [142, Article X], [172, Chapter III],
[176], d’où son nom, l’algorithme de Verlet–Störmer–Delambre. Son application aux méthodes
particulaires ou PIC (pour Particle-in-Cell) est expliquée dans [5, Section 2.4].

D’autres schémas numériques souvent utilisés sont les méthodes Runge–Kutta [18, Chap-
ter 2], qui existent pour n’importe quel ordre8. Enfin, il y a également les méthodes par scindage
(splitting) qui sont spécifiques à certains types d’équations différentielles, par exemple, [94]
pour l’équation de Vlasov, qui est utilisée dans la méthode semi-Lagrangienne.

Méthode des caractéristiques

Il n’est pas évident d’utiliser l’un de ces schémas numériques pour résoudre le système de
Vlasov–Poisson, parce que l’équation de Vlasov est une équation aux dérivées partielles. Il
est plus simple de résoudre des équations aux dérivées ordinaires. Passer des premières aux
secondes peut se faire grâce à la méthode des caractéristiques [15, Section 1.4][14, Section 3.2].

L’idée est d’utiliser des fonctions paramétriques à la place des variables t, #„x and #„v . Nous
introduisons donc trois fonctions T : R → R,

#„

X : R → R
3 et

#„

V : R → R
3. Nous cher-

chons une équation différentielle qui contienne f (
#„

X(s),
#„

V(s), T(s)). Nous calculons maintenant
d f (

#„

X(s),
#„

V(s), T(s))

ds
ce qui donne :

d
#„

X(s)

ds
· ∇ #„x f (

#„

X(s),
#„

V(s), T(s)) +
d

#„

V(s)

ds
· ∇ #„v f (

#„

X(s),
#„

V(s), T(s)) +
dT(s)

ds
∂ f

∂t
(

#„

X(s),
#„

V(s), T(s))

Maintenant si l’on fixe
d

#„

X(s)

ds
=

#„

V(s),
d

#„

V(s)

ds
=

q

m

#„

E(
#„

X(s), s) et
dT(s)

ds
= 1, nous reconnais-

sons le membre de gauche de l’équation de Vlasov (C.5). C’est donc ce que l’on fait. On choisit

T(s) = s comme solution naturelle de
dT(s)

ds
= 1 et nous trouvons donc que les caractéristiques

de l’équation de Vlasov sont solution du système d’équations aux dérivées ordinaires (C.7).

7Nous avons n étapes, et à chaque étape l’erreur est au plus proportionnelle à ( b−a
n )2, voir (C.6). La constante

dépend donc de la longueur de l’intervalle |b− a| et de supx∈[a;b]|g′(x)|.
8En fait, la méthode Runge–Kutta de premier ordre est la méthode d’Euler.
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d
#„

X(s)

ds
=

#„

V(s)

d
#„

V(s)

ds
=

q

m

#„

E (
#„

X(s), s) (Seconde loi de Newton)

(C.7)

Nous voyons ici une propriété très importante de f , qui provient de l’équation de Vla-

sov (C.5). Cette équation nous dit que
d f (

#„

X(t),
#„

V(t), t)

dt
= 0 ce qui implique la propriété sui-

vante :

Si f est solution du système de Vlasov–Poisson, alors f est constante le long des caractéris-
tiques de l’équation de Vlasov.

Propriété du système de Vlasov–Poisson

Cette propriété nous permet de suivre f en temps simplement en suivant les caractéris-
tiques.

Vérification de l’implémentation

Afin de vérifier notre implémentation et de comprendre l’erreur que nous commettons avec la
simulation numérique, nous avons à notre disposition des cas tests pour lesquels il existe des
solutions théoriques presque exactes, grâce à une analyse de dispersion, par exemple, [157].
Certains de ces cas tests et leurs solutions théoriques sont disponibles dans [35, Chapter 4].
Nous avons également mis au point de nouveaux cas tests avec leurs solutions théoriques
pendant cette thèse [207].

Discrétisation spatiale

En plus des erreurs inhérentes au schéma de discrétisation en temps, nous commettons égale-
ment des erreurs avec la discrétisation spatiale. Nos ordinateurs ont une mémoire finie, et nous
ne pouvons donc pas avoir accès à toutes les “valeurs de

#„

E au temps t” : pour un t fixé, un
ordinateur ne peut pas stocker

#„

E ( #„x , t) pour toutes les valeurs de #„x . Nous stockons alors les
valeurs sur une grille, par exemple pour l’axe des x :

• on peut toujours choisir de définir l’espace physique dans lequel les particules évoluent
comme l’intervalle [xmin; xmax] :

– lorsque cet espace est périodique (par exemple, un tore), on choisit xmax − xmin =
période (conditions aux bords périodiques)

– lorsque cet espace est fermé (les particules ne vont pas plus loin qu’une limite don-
née), on sait que f vaut 0 au-delà de cette limite (conditions aux bords libres)

– dans d’autres cas, l’espace physique évolue à chaque pas de temps, i.e. xmin et xmax

dépendent du temps (fenêtre mobile)

• on choisit un ∆x “petit” et on ne stocke que
xmax − xmin

∆x
valeurs différentes sur l’axe des

x

• pour chaque pas de temps, on ne stocke les valeurs de
#„

E que sur la grille



218 ANNEXE C. INTRODUCTION (EN FRANÇAIS)

C.3 Quelques notions d’informatique

Notre but dans cette thèse est d’écrire des algorithmes parallèles efficaces. C’est exactement la
même chose qu’il faut faire lorsque vous voulez cuisiner efficacement avec vos amis. L’algo-
rithme sera votre recette de cuisine, et le parallélisme viendra des différentes personnes qui
travailleront ensemble à réaliser la recette.

• Beurrez et farinez un moule à soufflé d’environ 20 cm de diamètre.
• Mettez le moule au réfrigérateur.
• Préchauffez le four à 200 °C (thermostat 6-7).
• Lavez et équeutez 300 g d’épinards frais.
• Faites fondre les épinards avec 10 g de beurre dans une poêle pendant 4 ou 5 minutes.
• Égouttez les épinards dans une passoire, et hachez-les au couteau.
• Cassez 4 œufs en séparant les blancs des jaunes.
• Préparez 300 mL de béchamel.
• Ajoutez à la béchamel les jaunes d’œufs, les épinards et une pincée de curry.
• Montez les blancs d’œufs en neige ferme avec une pincée de sel.
• Incorporez-les délicatement à la béchamel à l’aide d’une spatule.
• Remplissez le moule de cette préparation.
• Enfournez pour 30 minutes et n’ouvrez pas la porte du four durant la cuisson.
• Servez aussitôt.

FIGURE C.3 – Recette pour un soufflé aux épinards.

La Figure C.3 contient une recette de cuisine pour un plat que j’adore préparer : un soufflé
aux épinards — adaptée de https://cuisine.larousse.fr/recette/souffle-aux-epinards.
Premièrement, la recette contient de nombreux ordres que tout le monde comprend (beurrer,
fariner, mettre, laver, équeuter, fondre, égoutter, hacher, casser, séparer, ajouter, monter, incor-
porer, remplir, enfourner, servir). Ils correspondent à ce que l’on appelle les instructions d’un
algorithme. Puis, il y a une ligne spéciale que l’on ne comprend peut-être pas (préparer une
béchamel). Cela correspond à ce que l’on appelle une fonction. Si nous ne savons pas ce que
cette fonction fait, nous pouvons toujours aller voir les instructions dans sa définition. On peut
probablement trouver ailleurs une recette pour préparer une sauce béchamel. Enfin, il y a un
ordre dans lequel ces instructions doivent être exécutées. Suivre l’ordre qui est donné dans la
recette fonctionnera toujours, mais il est parfois possible de faire certains changements sans
changer le résultat final. Par exemple pour cette recette, vous pouvez séparer les œufs au tout
début de la recette sans changer le résultat (par exemple, si vous avez peur de casser les jaunes,
qui ont tendance à se casser plus facilement lorsque les œufs sont plus chauds).

Savoir quand réorganiser les instructions est l’une des clefs si l’on veut cuisiner avec des
amis. Essayer de faire coopérer de multiples ordinateurs sur un programme donné (le but étant
de calculer plus rapidement) est le parallélisme. Vous avez de nombreuses manières de cuisiner
en parallèle :

• Vous pouvez effectuer différentes tâches en parallèle les unes des autres. Une solution classique
lorsque vous voulez cuisiner avec des amis est que chaque participant s’occupe d’une
partie différente du repas (l’entrée, le plat, le dessert). Et même à l’intérieur de ces parties,
on peut appliquer récursivement cette solution (la préparation des épinards et de la sauce
béchamel peuvent être faites en parallèle).

• Vous pouvez choisir une tâche, et la diviser parmi les participants. Ici, laver et équeuter les épi-
nards prend du temps, et vous pouvez le faire efficacement en parallèle : chaque personne
prend une portion des épinards et s’en occupe en même temps que les autres.

• Vous pouvez organiser les différentes tâches en un pipeline. Cette option n’est pas vraiment
réalisable dans notre exemple, mais vient naturellement si l’on doit cuisiner une tarte

https://cuisine.larousse.fr/recette/souffle-aux-epinards
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aux pommes comme dessert après cet excellent soufflé. Effectivement, il est très efficace
et assez courant que quelqu’un épluche les pommes pendant qu’une autre personne les
coupe. Si on choisit ce mode de fonctionnement, au tout début la personne en charge de
la découpe n’a aucune pomme à couper, puis dès que la première pomme est épluchée,
elle a du travail jusqu’à la fin. Réciproquement, la personne en charge de l’épluchage a
du travail depuis le début, mais n’a plus rien à faire pendant que l’autre personne coupe
la dernière pomme (les choses peuvent varier légèrement si l’épluchage et la découpe des
pommes ont des temps sensiblement différents). L’idée est de gagner du temps parce que
chaque personne ne s’occupe que d’une seule chose. Il vaut mieux utiliser cette technique
avec des êtres humains de manière raisonnée [195], mais c’est une technique excellente
sans restriction quand utilisée sur des puces d’ordinateurs.

Dans notre thèse, nous mettrons l’accent sur le second point : diviser chaque tâche parmi les
participants. Dans un monde parfait, si on demande à 2 personnes de se répartir une tâche qui
demande 1 heure à 1 personne, nous devrions aboutir à une tâche de 30 minutes. L’accélération
(speedup : le temps qu’il faut pour effectuer une tâche tout seul, divisé par le temps qu’il faut
pour l’effectuer à plusieurs) optimale est de 2. Cela dit, dans certains programmes, cela ne se
passe pas toujours idéalement. Par exemple, même si on divise le soufflé en ramequins et quel
que soit le nombre de fours à notre disposition, il faudra toujours attendre 30 minutes pour la
cuisson. Le reste de la recette prend à peu près 30 minutes également pour 1 personne. Nous
réalisons donc que si nous sommes 2 à cuisiner cette recette, il n’est pas possible de la réali-
ser plus rapidement qu’en 45 minutes. Cela correspond à une accélération de 4

3 ≈ 1.33. Nous
venons de re-découvrir la loi d’Amdahl [130]. Amdahl prédisait que les parties séquentielles
des programmes resteraient le goulot d’étranglement principal de la programmation en paral-
lèle. Heureusement, sa prédiction ne s’est pas réalisée, et dans les programmes qui nous inté-
ressent, ces parties séquentielles sont si petites que leur temps d’exécution reste négligeable,
même dans une exécution parallèle — ce qui n’affecte donc pas l’accélération autant que dans
notre exemple.

C.3.1 Le parallélisme

“ Today parallelism is available in all computer systems, and at many different
scales starting with parallelism in the nano-circuits that implement individual ins-
tructions, and working the way up to parallel systems that occupy large data cen-
ters.9

U. A. Acar & G. E. Blelloch [1, Section 1.1] ”Les simulations réalistes nécessitent des billions d’octets de mémoire10, et sont exécutées
pendant des millions de pas de temps. Un ordinateur personnel typique possède entre 4 et
16 Go (milliards d’octets) de mémoire vive. Par exemple l’ordinateur que nous utilisons pour
écrire cette thèse dispose de 16 Go de mémoire. Il a fallu faire une demande pour rajouter 8 Go
de mémoire aux 8 Go habituellement disponibles, opération qui a coûté 100€. Cette mémoire est
bien trop petite pour pouvoir espérer y lancer des simulations réalistes. Même les ordinateurs
spécialisés en calcul scientifique n’ont pas assez de mémoire : ils ont souvent environ 100 Go
de mémoire. Il est donc impossible de faire l’impasse sur des grappes de multiples ordinateurs,
aussi connus sous le terme de supercalculateurs.

9“Aujourd’hui le parallélisme est disponible dans tous les systèmes composés d’ordinateurs, et à des échelles très
variées en commençant par le parallélisme dans les nano-circuits qui implémentent des instructions individuelles,
jusqu’aux systèmes parallèles qui occupent les gros centres de données.” U. A. Acar & G. E. Blelloch (traduction
par l’auteur de ce manuscrit)

10Un octet est composé de 8 bits ; un bit vaut 0 ou 1, c’est l’unité de base des calculs sur un ordinateur.
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Pour exécuter des programmes sur ces machines, il faut avoir au moins quelques notions
de base sur la programmation en parallèle et sur l’architecture des ordinateurs modernes. Nous
allons essayer de pallier toute lacune éventuelle à ces savoirs de base, si cela est nécessaire.

Nous travaillons avec des grappes d’ordinateurs, et il n’est donc pas possible d’éviter le
paradigme de mémoire partagée. Coup de chance, c’est le modèle le plus simple et il se trouve
même que tout peut être programmé dans ce modèle. . . même s’il faut également travailler
dans le paradigme de la mémoire partagée si l’on veut vraiment profiter de toute la puissance
des machines modernes.

La différence entre ces deux modèles est assez simple à comprendre. Supposons que vous
soyez à la tête d’une entreprise de fleurs. Vous avez une boutique à Amiens (Somme, Hauts-
de-France, France) et une autre au Touquet (Pas-de-Calais, Hauts-de-France, France). Un client
rentre dans la première boutique pour acheter un bouquet de roses jaunes. Le vendeur vérifie
la disponibilité, voit qu’il peut satisfaire le client, et lui vend le bouquet. Dans l’autre boutique,
à peu près au même moment, le même scénario se déroule. Il n’y a aucun problème. À la fin de
la semaine, les deux boutiques doivent se synchroniser pour connaître le nombre total de fleurs
de chaque type, ainsi que les bénéfices totaux. Quand on travaille en mémoire distribuée, il y a
donc besoin de distribuer les données (ici, les fleurs) parmi les différentes unités de calcul (ici,
les boutiques), de s’assurer que tout le monde peut travailler avec sa partie des données totales,
et enfin rassembler tous les calculs pour obtenir le résultat final et/ou remettre ensemble les
différentes données (ici, obtenir le stock de fleurs et d’argent). À chaque fois qu’une unité veut
accéder à une partie des données qu’elle n’a pas, elle peut la demander à un collègue, mais
cela prendra probablement du temps (ici, envoyer des fleurs d’une boutique à l’autre prendra
probablement plusieurs heures), et vous devez vous assurer que votre collègue s’attend à de
telles demandes — sinon, il ne répondra jamais.

Supposons maintenant que nous ne sommes pas dans différentes boutiques, mais dans une
seule boutique avec deux vendeurs. Envisageons maintenant le scénario suivant — pas très
réaliste dans la vie de tous les jours, mais très probable sur un ordinateur — deux clients entrent
dans la boutique. Le premier demande un bouquet de cinq roses jaunes, et le premier vendeur
va dans l’arrière-boutique vérifier la disponibilité et le prix. Il voit sept roses jaunes, et revient
dire à son client qu’il n’y a pas de problème. Son client est d’accord pour acheter les cinq roses
au prix indiqué. Au même moment, un autre client veut un bouquet de trois roses jaunes. Le
second vendeur se charge de cet autre client, va dans l’arrière-boutique juste après son collègue,
y voit toujours les sept roses jaunes, et revient dire à son client qu’il n’y a aucun problème.
Le premier client continue ses achats, tandis que le second ne souhaite que ce bouquet. Le
second vendeur va chercher les trois fleurs, et son client s’en va après avoir payé, l’air satisfait.
Quand le premier client a fini de choisir ses autres bouquets, le premier vendeur repart dans
l’arrière-boutique. . . pour s’apercevoir qu’il n’y a plus que quatre roses jaunes. Bien sûr, pour
éviter un tel scénario, chaque vendeur peut prendre avec lui les fleurs quand il part vérifier
la disponibilité. En informatique, nous appellerions cela une opération atomique. Plutôt que
de simplement vérifier un nombre, puis de plus tard changer sa valeur, on fait les deux en
une seule passe. Si quelqu’un d’autre veut accéder à la donnée pendant ces deux opérations
combinées, il ne peut pas car la donnée est verrouillée pendant une opération atomique. Cela
évite le scénario décrit qui s’appelle un accès concurrent (deux acteurs différents accédant à la
même donnée alors qu’au moins l’un d’entre eux essaye de la modifier). Bien sûr il n’y a aucun
problème si les deux accès sont des lectures (les deux vendeurs peuvent vérifier le prix d’un
même article sans problème). Nous avons vu ici les bénéfices de la mémoire partagée, mais
aussi l’un de ses gros défauts. Quand ils partagent l’arrière-boutique, les deux vendeurs n’ont
pas besoin de se synchroniser pour savoir combien de fleurs ils ont en stock. Par contre, ils
doivent faire attention quand ils ont besoin de modifier le stock.

L’exemple précédent a présenté un bogue très commun quand on écrit un programme dans
le modèle de mémoire partagée. Cela dit, nous ne sommes pas intéressés que par des simu-
lations sans bogue, nous voulons également des simulations rapides. Supposons maintenant
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que les deux vendeurs aient évité les accès concurrents en s’occupant des stocks de fleurs sur
différents étages de l’étagère. Le premier vendeur pourrait avoir la responsabilité des roses, sur
les deux étages du bas de l’étagère, et l’autre pourrait avoir la responsabilité des tournesols, sur
les deux étages du haut de l’étagère. Il peut arriver qu’ils aient tous les deux besoin de fleurs
sur cette même étagère en même temps. Quand cela arrive, ils vont probablement se gêner,
parce qu’ils sont en face de la même étagère. Ce scénario se produit sur un ordinateur quand
deux acteurs accèdent à deux données différentes qui sont “trop proches” en mémoire : cela
s’appelle un faux partage. Premièrement, nous devons comprendre que les données ne sont pas
organisées nombre par nombre, mais bloc de nombres par bloc de nombres. Si deux acteurs
accèdent à deux nombres dans le même bloc, le système ne peut pas être certain qu’ils sont en
train de manipuler deux nombres différents, et doit donc faire attention pour traiter le cas où
ils accéderaient au même nombre à l’intérieur de ce bloc. Pour être certain que cela n’arrive
jamais, nous pouvons mettre les roses et les tournesols sur deux étagères différentes. Voyant
que les deux acteurs sont en train de calculer sur deux nombres dans deux blocs différents, le
système peut maintenant être certain qu’aucun accès concurrent ne peut survenir.

Pour aller dans le même sens que les travaux de nombreux collègues dans la communauté
du calcul scientifique, nous utiliserons dans cette thèse l’extension de langage OpenMP [182]
(pour C, C++ et Fortran) concernant le parallélisme en mémoire partagée. Les différents ac-
teurs en OpenMP sont appelés des fils d’exécution (threads), ils sont les différents vendeurs dans
notre exemple floral. Nous n’utiliserons qu’une petite partie des possibilités d’OpenMP dans
cette thèse. Notons par exemple qu’OpenMP permet le parallélisme par tâche qui est utilisé dans
certaines implémentations PIC, par exemple, OSIRIS [33, Section 8.6]. Dans cette thèse, nous ne
nous sommes pas servis du mécanisme de tâches.

C.3.2 Vectorisation

“ Skill and knowledge of vectorization is absolutely ESSENTIAL to gain perfor-
mance on the Intel® Xeon Phi™ product family.11

https://software.intel.com/en-us/articles/vectorization-essential ”Nous avons vu le parallélisme en mémoire distribuée et en mémoire partagée. Il existe un
troisième niveau de parallélisme, le parallélisme vectoriel.

La vectorisation est la transformation d’un code du genre de celui montré dans le Listing C.1
vers celui montré dans le Listing C.2. Dans cet exemple, A, B et C sont des tableaux de doubles,
et nous faisons l’hypothèse qu’il est possible de calculer 4 opérations sur des nombres réels
en double précision à la fois, ce qui nécessite des vecteurs de taille 256 bits (un double prend
64 bits de mémoire).

1 for (i = 0; i < 1024; i++)

2 C[i] = A[i] + B[i];

Listing C.1 – Code sans vectorisation.

1 for (i = 0; i < 1024; i+=4)

2 C[i:i+3] = A[i:i+3] + B[i:i+3];

Listing C.2 – Code vectorisé.

Le Listing C.1 utilise des instructions scalaires. L’ordinateur charge A[0] et B[0] dans deux
registres scalaires, calcule A[0] + B[0], stocke le résultat dans C[0], puis charge A[1] et B[1],
calcule A[1] + B[1], stocke le résultat dans C[1]. . . Sur les architectures “modernes”, il existe la
possibilité, si l’on effectue la même instruction sur de multiples données contiguës (un tableau),
d’effectuer l’opération bloc d’éléments par bloc d’éléments, plutôt qu’élément par élément.
L’ordinateur utilise alors des instructions vectorielles plutôt que des instructions scalaires. Dans

11“Les compétences et la connaissance de la vectorisation sont absolument ESSENTIELLES pour améliorer les
performances sur les produits de la famille Intel® Xeon Phi™.” https://software.intel.com/en-us/articl

es/vectorization-essential (traduction par l’auteur de ce manuscrit)

https://software.intel.com/en-us/articles/vectorization-essential
https://software.intel.com/en-us/articles/vectorization-essential
https://software.intel.com/en-us/articles/vectorization-essential
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le Listing C.2, l’ordinateur charge A[0]A[1]A[2]A[3] dans un registre vectoriel, charge de la
même manière B[0]B[1]B[2]B[3] dans un autre registre vectoriel, calcule les quatre additions
en une seule instruction vectorielle, et stocke le vecteur résultat dans C[0]C[1]C[2]C[3]. . . Si
les données ne sont pas contiguës en mémoire — vous pouvez avoir des accès indirects (par
exemple, A[f(i)]), des pas non-unitaires (par exemple, en utilisant des tableaux de structures)
— alors vous pourrez tout de même utiliser les opérations vectorielles mais vous aurez besoin
d’opérations de réunion et/ou dispersion (gather et/ou scatter) pour charger et/ou stocker les
données non contiguës en mémoire.

Ce type de parallélisme est connu sous le nom SIMD (une Seule Instruction sur de Mul-
tiple Données, Single Instruction Multiple Data), et pour atteindre les performances maximales
données par les vendeurs de processeurs, il faut utiliser les instructions vectorielles.

Pour le travail présenté dans cette thèse, nous avons pris soin d’écrire notre code pour qu’il
bénéficie de la mémoire distribuée, de la mémoire partagée ainsi que de la vectorisation. Voir
la Section 4.3.4 pour des applications dans une implémentation PIC.

C.3.3 Efficacité

“ Note that metrics such as flop/s or percentage-of-peak are less relevant for the
predominantly memory-bound gyrokinetic PIC methods, as modern architectures
require 10 flops per byte moved from DRAM in order to be compute-limited.12

W. Tang, B. Wang, S. Ethier, G. Kwasniewski, T. Hoefler, K. Z. Ibrahim, K. Mad-
duri, S. Williams, L. Oliker, C. Rosales-Fernandez and T. Williams [83] ”La majeure partie du travail fourni dans cette thèse concerne l’optimisation d’une implé-

mentation PIC. Mais dès qu’on parle d’optimisation, de nombreuses questions émergent :

• Comment mesurer la performance d’une implémentation ?

• Comment lire et comprendre des résultats de performance ?

• Comment comparer les performances de deux implémentations différentes ?

Pour étudier la performance de notre implémentation, tout au long de cette thèse, les
mesures de performances ont été obtenues en rajoutant quelques lignes de code pour obtenir
des temps d’exécution. Observer un phénomène peut pourtant changer ce phénomène [139].
Nous avons donc pris soin de vérifier que ce n’était pas le cas ici. Il est possible d’obtenir des
informations plus détaillées en utilisant des outils plus complexes, mais nous avons choisi la
simplicité de cette approche.

Pour étudier la performance parallèle d’une implémentation, il y a deux tests.
Le premier test est le passage à l’échelle fort (strong scaling) : nous commençons avec un

problème de taille N résolu par P processeurs. Puis, nous ajoutons quelques processeurs, tout
en gardant la taille totale du problème N constante. Ce test évalue la capacité d’un programme
à résoudre un problème donné sur de plus grosses machines.

12“Notez que les métriques telles que le nombre d’opérations en virgule flottante par seconde ou le pourcentage
de la performance maximum sont moins pertinentes pour les méthodes PIC gyrocinétiques qui sont avant tout
limitées par les accès mémoire, puisque les architectures modernes demandent 10 opérations en virgule flottante
par octet transféré de la mémoire vive dynamique pour être limitées par les calculs.” W. Tang, B. Wang, S. Ethier,
G. Kwasniewski, T. Hoefler, K. Z. Ibrahim, K. Madduri, S. Williams, L. Oliker, C. Rosales-Fernandez and T. Williams
(traduction par l’auteur de ce manuscrit)
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On dit qu’il y a parallélisme idéal si, quand on multiple le nombre de processeurs par k, le
problème est résolu k fois plus vitea.

aRemarque : parfois, des effets super-linéaires sont observés : le problème est résolu plus que k fois plus vite.
Cela peut arriver par exemple quand le fait de découper le problème en sous-problèmes plus petits aboutit à une
meilleure réutilisation des données dans le cache. Dans ce cas, cela veut dire que l’implémentation séquentielle
peut probablement être améliorée pour également bénéficier d’une meilleure réutilisation du cache.

Parallélisme idéal (passage à l’échelle fort)

Le second test est le passage à l’échelle faible (weak scaling) : nous commençons avec un
problème de taille N résolu par P processeurs. Puis, nous ajoutons quelques processeurs, tout
en gardant la taille du problème par processeur N/P constante. Ce test évalue la capacité d’un
programme à résoudre de plus gros problèmes sur de plus grosses machines.

Quand on considère un problème de complexité linéaire — Θ(N), comme l’algorithme PIC
—, on dit qu’il y a parallélisme idéal si le temps d’exécution ne change pas alors qu’on aug-
mente le nombre de processeurs.

Parallélisme idéal (passage à l’échelle faible)

Par exemple regardons la Figure C.5, en commençant à partir de 8 cœurs (le comportement
de 1 à 8 cœurs sera expliqué plus tard). Nous voyons que nous avons un passage à l’échelle
faible presque idéal jusqu’à 512 cœurs, et ensuite notre temps d’exécution augmente alors qu’il
devrait continuer à être constant. C’est dû au fait que le schéma de parallélisation choisi ajoute
un facteur logarithmique au temps d’exécution, comme discuté dans la Section 2.6.

Une fois que l’on sait combien de temps chaque partie de notre code prend, il est aisé de
comparer deux implémentations différentes. Mais cela ne nous dit rien sur l’efficacité absolue
de notre implémentation. Dans le résumé de notre premier article [204], nous indiquons que
notre implémentation traite 65 millions de particules par seconde par cœur sur un processeur
Intel Haswell (en n’utilisant qu’un seul fil d’exécution par cœur et pas deux comme le permet-
trait la technologie hyper-threading d’Intel). Comment savoir si cette performance est bonne ?
Plus tard dans cet article, nous voyons qu’il y a un “saut” en efficacité quand on passe de 4 à
8 cœurs [204, Figure 7], voir la Figure C.5. Comment savoir si ce saut est une mauvaise chose ?
Rentrons dans plus de détails pour le comprendre.

Pour extraire de l’information des résultats de performance, et avoir une intuition de ce
qui devrait être un résultat bon ou mauvais, nous avons besoin d’avoir au moins des notions de
base en architecture des ordinateurs, et de connaître quelques propriétés de notre implémenta-
tion. Nous avons pu éviter ces aspects techniques lorsque nous avons découvert les bases du
parallélisme, mais maintenant que cette introduction touche à sa fin, nous devons les aborder.

À chaque fois qu’un calcul est effectué (par exemple, C[i] = A[i] + B[i], ligne 2 du Lis-
ting C.1), une unité de calcul va se charger du calcul. Avant que le calcul ne puisse être effectué,
les données (ici, A[i] et B[i]) doivent être chargées depuis la mémoire principale. Après le cal-
cul, le résultat (ici, C[i]) doit être écrit dans la mémoire principale. Dans certains cas c’est un
peu différent, mais si l’on effectue cette boucle sur de gros tableaux, c’est une bonne approxi-
mation de ce qui se passe. Il y a donc deux propriétés architecturales qui vont contribuer à
l’efficacité de cette boucle :

• À quelle vitesse peut-on effectuer les calculs ? C’est la fréquence de notre processeur.

• À quelle vitesse peut-on accéder aux données ? C’est la bande passante de notre processeur.

Il y a un modèle simple mais très utile qui va nous permettre de savoir ce que l’on peut at-
tendre d’une implémentation donnée, en connaissant ces paramètres architecturaux : le modèle
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“ligne-toit” (roofline) [180]. Quand nous avons beaucoup d’accès mémoire et peu d’opérations,
nous sommes limités par la bande passante. Nous sommes dans un cas où nous sommes limités
par la mémoire. C’est le cas pour un algorithme PIC (nous avons Θ(N) données à lire et à écrire,
et Θ(N) opérations à effectuer sur ces données). Quand on n’a pas beaucoup de mémoire à
charger mais beaucoup d’opérations à effectuer, nous allons être limités par la performance
des opérations en virgule flottante. Nous sommes dans un cas où nous sommes limités par le
calcul. C’est le cas par exemple pour les multiplication de matrices denses (nous avons Θ(N2)
données à lire et à écrire, et Θ(N3) opérations à effectuer sur ces données13). Le paramètre
que nous devons regarder est donc l’intensité opérationnelle de notre implémentation. Combien
d’opérations en virgule flottante avons-nous par octet que nous devons charger depuis la mé-
moire ou écrire en mémoire ? Dans le Listing C.1, si les tableaux contiennent des doubles (un
double nécessite 8 octets pour être stocké), nous avons une opération pour 24 octets déplacés.
Cette intensité opérationnelle est extrêmement faible sur les architectures modernes, et notre
boucle sera donc limitée par la mémoire. Cette boucle sert en fait d’étalon (benchmark) pour
tester la bande passante maximum qui peut être atteinte en pratique : l’étalon Stream [162]. En
général, le pic atteignable en pratique est plus bas que le pic théorique.

Quelques paragraphes plus tôt, nous voulions savoir si 65 millions de particules par se-
conde était un bon résultat sur 1 cœur. Nous pouvons maintenant dessiner le modèle ligne-toit
pour notre architecture et notre implémentation, voir la Figure C.4. Notre architecture peut
atteindre 68 Go/s pour 4 canaux mémoire14, donc 17 Go/s pour 1 cœur. La fréquence est de
2.3 GHz et le nombre maximum d’opérations en simple précision par cycle est de 3215, donc
le nombre maximum d’opérations par seconde est de 73.6 GFlops/s. Notre implémentation 2d
atteint 62 opérations par particule, et nécessite ≈ 103 octets déplacés par particule. Cela nous
donne une intensité opérationnelle de ≈ 0.60. Pour cette intensité, aucune implémentation ne
peut dépasser 8.3 GFlops/s, donc notre implémentation qui atteint 4.5 GFlops/s est plutôt
bonne. Remarquons néanmoins que ce graphique n’est pas suffisant pour analyser les per-
formances d’une implémentation donnée. Même si l’on atteignait la ligne de l’étalon Stream,
rien ne nous assure que la performance de l’implémentation ne peut pas être encore amélio-
rée. Nous avons par la suite mis au point des algorithmes qui nécessitent moins de transferts
mémoire. Ainsi, l’intensité opérationnelle augmente, et la performance maximum atteignable
augmente elle aussi.

Ce modèle nous dit quelles performances peuvent être atteintes lorsque l’on a des pro-
priétés fixées pour notre architecture et notre implémentation. Il reste une dernière étape à
comprendre lorsque l’on étudie le passage à l’échelle d’une implémentation sur un processeur.
Sur les architectures modernes, il y a plus de cœurs que de canaux mémoire. Quelques para-
graphes plus tôt, nous voulions savoir s’il était attendu ou non d’avoir un passage à l’échelle
“non parfait” pour notre implémentation, entre 4 et 8 cœurs. Notre architecture a 8 cœurs mais
seulement 4 canaux mémoire. En utilisant 1 cœur, ce cœur peut utiliser un canal. Avec 2 ou
4 cœurs, chaque cœur peut utiliser son propre canal. Mais dès que l’on atteint 8 cœurs, les
cœurs doivent partager les canaux mémoire. Parce que notre implémentation est bornée par
la mémoire, ce n’est donc pas surprenant d’avoir ce genre de comportement, voir le passage
à l’échelle faible (la taille du problème par processeur est constante, donc la taille totale du
problème augmente avec le nombre de processeurs) de la Figure C.5.

Comparer les efficacités de différentes implémentations est une tâche ardue. La compa-
raison directe entre les résultats de performance de deux articles est difficile à mettre en œuvre,
pour de multiples raisons :

13Des algorithmes de multiplications de matrices existent avec une complexité moindre, par exemple, l’algo-
rithme de Strassen en Θ(Nlog2(7)) [174] ou plus récemment Θ(N2.3728639) [158], mais pour des valeurs de N qui
peuvent être traitées par un ordinateur classique, utiliser des variantes optimisées de l’algorithme naïf en Θ(N3)
aboutit aux meilleurs temps de calcul.

14http://ark.intel.com/products/81705
15https://en.wikipedia.org/wiki/FLOPS

http://ark.intel.com/products/81705
https://en.wikipedia.org/wiki/FLOPS
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• Les paramètres architecturaux sont très souvent différents dans les articles. Nous devons
donc d’abord normaliser les résultats en fonction des paramètres architecturaux. Dans
cette thèse, nous proposons une normalisation qui est utile pour les implémentations PIC
ainsi que pour n’importe quel type d’implémentation limitée par la mémoire : nous nor-
malisons les résultats en fonction de la bande passante mémoire maximale théorique des
différentes architectures. Cela donne un premier aperçu du comportement d’une implé-
mentation donnée par rapport à une autre, même si la bande passante mémoire maximale
n’est pas le seul paramètre à prendre en compte.

• Les détails d’implémentation varient probablement (pour une implémentation PIC cela
peut être les équations, les conditions initiales, la précision des calculs, les ordres d’inter-
polation et de discrétisation en temps. . .).

Pour vraiment comparer deux implémentations, nous devrions donc les exécuter sur la
même architecture, avec les mêmes paramètres. C’est habituellement impossible parce que
nous n’avons que très rarement accès au code source des autres articles, et même quand nous y
avons accès, l’exécuter sur une architecture donnée pourrait ne pas lui rendre justice, puisque
cette implémentation pourrait bien ne pas avoir été optimisée pour cette architecture cible. Les
deux équipes qui ont écrit les deux codes devraient donc coopérer sensiblement, juste pour
pouvoir comparer les performances de leurs deux implémentations. Les équipes n’ont pas au-
tant de temps à consacrer à cela.
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Annexe D

Contributions (en français)

D.1 Description

Dans cette thèse, nous nous intéressons à la résolution du système d’équations Vlasov–Poisson,
utile dans le domaine de la physique des plasmas. Notre objectif principal est l’efficacité des
implémentations qui résolvent ces équations, sur architectures multi-cœurs. Bien que l’appli-
cation principale de notre implémentation soit la simulation de plasmas, il est également pos-
sible de modifier légèrement l’implémentation pour des simulations dans d’autres contextes,
par exemple en astrophysique.

La contribution principale de notre thèse est un logiciel écrit dans le langage C, dont le
nom est Pic-Vert. Il s’agit d’une implémentation de la méthode particulaire (Particle-in-Cell)
pour la physique des plasmas. Trois étapes importantes sont indispensables pour une telle
implémentation, étant donné son contexte pluridisciplinaire :

• (informatique) elle doit être efficace. La performance d’une telle implémentation est limi-
tée par la bande passante de l’architecture considérée, ce qui revient à dire que les de-
mandes en données pour résoudre le système numérique sont bien supérieures, propor-
tionnellement aux ressources disponibles sur les ordinateurs modernes, aux demandes
en calcul. Cette limitation peut être vérifiée dans le modèle “ligne-toit” (roofline). L’uti-
lisation de la bande passante est donc une bonne métrique pour s’assurer de l’efficacité
d’une implémentation donnée.

• (mathématiques) elle doit être vérifiée. Il existe dans la littérature de nombreux cas tests
dont on connaît des solutions théoriques presque exactes. Il faut donc vérifier que l’im-
plémentation se comporte correctement sur ces cas tests. De plus, pour d’autres cas tests,
il existe des diagnostics pour s’assurer que les résultats sont cohérents, comme la conser-
vation de l’énergie totale.

• (physique) elle doit être validée. Le modèle physique utilisé dans une implémentation a
toujours des limites. Il faut donc valider le modèle choisi en comparant, quand cela est
possible, les résultats de la simulation à des résultats tirés d’expériences physiques.

Pour s’assurer de la performance, nous proposons une implémentation qui (a) atteint un
nombre quasi-minimal de transferts mémoires avec la mémoire principale, (b) exploite les ins-
tructions vectorielles (SIMD) pour les calculs numériques, et (c) expose une quantité suffisante
de parallélisme pour occuper tous les cœurs d’un processeur moderne, en mémoire partagée.
En plus de ces propriétés théoriques, nous montrons dans notre thèse des mesures de bande
passante mémoire de notre implémentation en pratique. Nous avons en plus implémenté une
parallélisation pour la mémoire distribuée, mais ce niveau de parallélisme n’est pas le cœur
de notre travail. Pour mettre notre travail en perspective avec l’état de l’art, nous avons mis
au point une nouvelle métrique permettant de comparer différentes implémentations de cette
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FIGURE D.1 – Structure de données en liste chaînée de tableaux de taille fixe : tableaux de taille
10, les particules sont stockées dans les cases grisées.

méthode, sur différentes architectures multi-cœurs. Nous donnons un aperçu de cette compa-
raison dans la suite de ce résumé.

Pour la vérification, nous simulons des cas tests classiques d’amortissement Landau, en
deux et trois dimensions. Nous simulons également un nouveau cas test qui a été conçu par nos
co-auteurs. La correction de notre implémentation sur ces cas tests est possible en comparant
l’énergie électrique simulée à sa valeur théorique obtenue à partir d’une analyse de dispersion.

Pour la validation, nous simulons un cas test de trou d’électrons en deux dimensions spa-
tiales et trois dimensions de vitesses. Notre implémentation reproduit les résultats d’un article
présentant ce cas test, qui a été validé grâce à des mesures satellites de trous d’électrons dans
différentes parties de la magnétosphère.

D.2 Organisation du manuscrit

Dans notre manuscrit, nous évoquons d’abord le contexte général de notre thèse et expliquons
la méthode particulaire dans les deux premiers chapitres. Ensuite, nous expliquons nos diffé-
rentes contributions à l’état de l’art.

Deux chapitres sont dédiés aux caractéristiques principales de Pic-Vert.
L’un de ces chapitres se concentre sur l’optimisation d’un algorithme relativement standard

pour la méthode particulaire, où l’on utilise des organisations mémoires classiques pour repré-
senter les particules, que l’on trie de manière périodique en temps pour réduire les défauts de
cache. Plusieurs optimisations présentées dans ce chapitre sont classiques et d’autres sont, à
notre connaissance, nouvelles. Dans nos tests en deux dimensions, cet algorithme donne lieu à
l’implémentation la plus efficace, ce que l’on montre dans le dernier chapitre.

Le second de ces chapitres présente une heureuse combinaison entre les listes chaînées de
tableaux de taille fixe, voir la Figure D.1, et la méthode particulaire. Les algorithmes présentés
dans cette section utilisent en partie des optimisations du chapitre précédent, et aboutissent,
dans nos tests en trois dimensions, à l’implémentation la plus efficace, ce que l’on montre éga-
lement dans le dernier chapitre.

Un chapitre est ensuite dédié à l’implémentation d’une méthode semi-Lagrangienne, en
deux dimensions, en utilisant la décomposition de domaine. Ce chapitre est indépendant des
autres, à part si l’on prend en considération le chapitre introductif. Les structures de données
pour cette méthode sont entièrement différentes de celles nécessaires pour la méthode par-
ticulaire, et le fait que l’on utilise la décomposition de domaine aboutit à un comportement
radicalement différent en terme de mémoire distribuée. Nous présentons un algorithme qui
s’affranchit des limitations trouvées dans l’état de l’art, et proposons des directions futures
exploitables pour cette implémentation.
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Un chapitre est ensuite dédié à la vérification et la validation de notre implémentation. Il
décrit dans un second temps comment utiliser, dans une même implémentation, à la fois la
méthode particulaire et la méthode semi-Lagrangienne.

Enfin, un dernier chapitre vient conclure cette thèse et présenter des travaux futurs.

D.3 Publications

Cette thèse se base sur les publications suivantes :

[i] Y. Barsamian, S. A. Hirstoaga, and É. Violard. “Efficient Data Structures for a Hybrid
Parallel and Vectorized Particle-in-Cell Code”. Dans : 2017 IEEE International Parallel and Distri-
buted Processing Symposium Workshops (IPDPSW). IEEE Computer Society, 2017, pp. 1168–1177.

DOI : 10.1109/IPDPSW.2017.74
Transparents : http://www.barsamian.am/Slides/slides_2017-06-02.pdf.

[ii] Y. Barsamian, A. Charguéraud, and A. Ketterlin. “A Space and Bandwidth Efficient Mul-
ticore Algorithm for the Particle-in-Cell Method”. Dans : Parallel Processing and Applied Mathe-
matics : 12th International Conference (PPAM). vol. 10777. Lecture Notes in Computer Science.
Springer, Cham, 2018, pp. 133–144.

DOI : 10.1007/978-3-319-78024-5_13
Transparents : http://www.barsamian.am/Slides/slides_2017-09-11.pdf.

[iii] Y. Barsamian, S. A. Hirstoaga, and É. Violard. “Efficient Data Layouts for a Three-
Dimensional Electrostatic Particle-in-Cell Code”. Dans : Journal of Computational Science 27
(2018), pp. 345–356.

DOI : 10.1016/j.jocs.2018.06.004.

[iv] Y. Barsamian, J. Bernier, S. A. Hirstoaga, and M. Mehrenberger. “Verification of 2D× 2D
and two-species Vlasov–Poisson solvers”. Dans : ESAIM : Proceedings and Surveys 63 (2018),
pp. 78–108.

DOI : 10.1051/proc/201863078. Transparents : http://www.barsamian.am/Slides/slides
_2016-08-25.pdf.

[v] Y. Barsamian, A. Charguéraud, S. A. Hirstoaga, and M. Mehrenberger. “Efficient Strict-
Binning Particle-in-Cell Algorithm for Multi-Core SIMD Processors”. Dans : 24th International
Conference on Parallel and Distributed Computing (Euro-Par). Vol. 11014. Lecture Notes in Com-
puter Science. Springer, Cham, 2018, pp. 749–763.

DOI : 10.1007/978-3-319-96983-1_53
Transparents : http://www.barsamian.am/Slides/slides_2018-08-30.pdf.

Cette publication est couplée aux fichiers suivants, permettant de reproduire nos résultats,
qui ont reçu la distinction de “Meilleurs Artefacts” à la conférence Euro-Par 2018 :

[vi] Y. Barsamian, A. Charguéraud, S. A. Hirstoaga, and M. Mehrenberger. Software artifacts
for Euro-Par 2018 paper : “Efficient Strict-Binning Particle-in-Cell Algorithm for Multi-Core SIMD
Processors”. Figshare. 2018.

URL : https://doi.org/10.6084/m9.figshare.6391796.

En plus de ces publications, le chapitre sur la méthode semi-Lagrangienne est basé sur les
travaux suivants, présentés à l’oral mais non encore publiés dans un article :

[vii] Y. Barsamian and M. Mehrenberger. “Semi-Lagrangian Simulations for Solving 2d2v
Vlasov–Poisson Systems (one and two species)”. Dans : Platform for Advanced Scientific Compu-
ting (PASC), Minisymposium “Kinetic Simulations on HPC Platforms for Plasma Physics Applications
(3/3) : Parallelization and New Hardware”. 2017.

Transparents : http://www.barsamian.am/Slides/slides_2017-06-27.pdf.
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Enfin, nous avons, au cours de cette thèse, rédigé un rapport de recherche dans une théma-
tique différente, qui n’est donc pas présenté dans le manuscrit :

[viii] Y. Barsamian. “Maximum Subarray Problem in 1D and 2D via Weighted Paths in Di-
rected Acyclic Graphs”. Rap. Tech. Université de Strasbourg, 2016.

URL : https://hal.archives-ouvertes.fr/hal-01585324.

D.4 Comparaison entre Pic-Vert et d’autres implémentations

Pic-Vert est disponible sur http://www.barsamian.am/Pic-Vert/. L’implémentation a été re-
vue par les pairs à la conférence Euro-Par 2018, et une partie de notre implémentation est donc
disponible sur le dépôt suivant : https://doi.org/10.6084/m9.figshare.6391796.

Dans la Table D.1, nous comparons l’efficacité de Pic-Vert à celle d’autres implémentations.
La comparaison est toujours un peu délicate, et ce pour plusieurs raisons : (a) des changements
dans les phénomènes physiques simulés peuvent donner lieu à des variations de performances,
et (b) l’utilisation de différentes architectures impacte également les performances. Nous pro-
posons une métrique qui permet de s’affranchir de la seconde limitation :

Dans cette table, la colonne normalisée donne le nombre de particules traitées par seconde
divisé par la bande passante théorique de l’architecture. Nous pensons que c’est un nombre
qui peut être comparé (l’efficacité s’accroissant en même temps que ce nombre), car la mé-
thode particulaire est limitée par la bande passante. Cette métrique n’est pas parfaite, car le
nombre de cœurs sur une architecture a également un impact sur la performance, mais nous
pensons qu’elle est suffisante pour donner au moins une première idée des performances
relatives de différentes implémentations.

Notre métrique pour comparer différentes implémentations

Cette table, malgré quelques différences entre les différentes simulations des différentes im-
plémentations, donne ce que nous pensons être un bon aperçu des comparaisons relatives de
ces implémentations, en regardant la colonne normalisée. Pour prouver que notre métrique a
un sens et n’a pas été créée de toutes pièces pour montrer une fausse supériorité de notre im-
plémentation, nous avons choisi l’architecture Intel Haswell également utilisée dans nombre
d’autres articles (Intel Xeon E5-269X). Sur cette architecture, nous obtenons un nombre nor-
malisé 3 fois plus élevé que d’autres implémentations sur CPU. Il est enfin intéressant de re-
marquer que la dernière implémentation EMSES [72], sur un accélérateur de type MIC, a un
meilleur résultat que Pic-Vert quant à cette métrique, mais elle a le défaut de gérer séquen-
tiellement les particules rapides, alors que notre algorithme incorpore dans la boucle parallèle
la gestion de ces particules : sur certains cas tests, nous avons prouvé que notre algorithme est
plus rapide que celui d’EMSES.

https://hal.archives-ouvertes.fr/hal-01585324
http://www.barsamian.am/Pic-Vert/
https://doi.org/10.6084/m9.figshare.6391796
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Architecture
Nombre

de
cœurs

Bande
passante
(Go/s)

Nombre
de parti-
cules/s

Normalisation

VPIC IBM PowerXCell 8i 9 204.8 173 · 106 0.85
OSIRIS Intel Xeon E5-2680 8 51.2 134 · 106 2.62
ORB5 Intel Xeon E5-2670 8 51.2 69 · 106 1.35
PICADOR Intel Xeon E5-2697 v3 14 68 127 · 106 1.87
GTC-P Intel Xeon E5 2692 v2 12 59.7 100 · 106 1.68
PIConGPU Intel Xeon E5-2698 v3 16 68 111 · 106 1.63
Pic-Vert Intel Xeon Platinum 8160 24 128 740 · 106 5.78
Pic-Vert Intel Xeon E5-2690 v3 12 68 374 · 106 5.49

PIConGPU NVIDIA Tesla GK210 2496 480 336 · 106 0.70
ORB5 NVIDIA Tesla K20X 2688 250.0 177 · 106 0.71
PICADOR Intel Xeon Phi 7250 (KNL) 68 115.2 298 · 106 2.59
EMSES Intel Xeon Phi 7250 (KNL) 68 115.2 1300 · 106 11.3

TABLE D.1 – Performances de certaines implémentations 3d de la méthode particulaire (en
haut : CPUs ; en bas : accélérateurs de type GPU ou MIC). La colonne normalisée, en nombre
de particules par octet, est obtenue en divisant la colonne “Nombre de particules/s” par la
colonne “Bande passante” (et en divisant par 106 puisque le résultat est par octet et pas par
gigaoctet).
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