Devoir Surveillé n°4 Correction

Cours

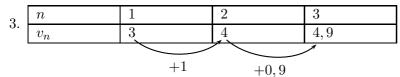
$$u_n = u_1 + (n-1) \times raison = \boxed{5 + 3(n-1)} = 2 + 3n.$$

Exercice 1: Foire aux questions

Partie A - Première modélisation

- 1. v_0 correspond au nombre de questions, en centaines, posées le (0+1)-ième mois (donc le 1^{er}) d'existence du forum. 300 questions ont été posées ce 1^{er} mois, ce qui fait 3 centaines donc $v_0 = 3$.
 - Du (n-1)-ième mois au n-ième, 90% des questions sont reposées, ce qui correspond à $0,9v_n$; ce à quoi il faut rajouter 130 nouvelles questions donc 1,3 centaines, ainsi $v_{n+1} = 0,9v_n + 1,3$.
- 2. En remplaçant n par 0 dans la formule, on obtient $v_1 = 0, 9v_0 + 1, 3 = 0, 9 \times 3 + 1, 3 = 4$. Cela veut dire que lors du second mois, 400 questions ont été posées.

En remplaçant n par 1 dans la formule, on obtient $v_2 = 0, 9v_1 + 1, 3 = 0, 9 \times 4 + 1, 3 = 4, 9$. Cela veut dire que lors du troisième mois, 490 questions ont été posées.



On n'a pas la même addition à faire, ce n'est pas une suite arithmétique.

-		,	-
n	1	2	3
v_n	3	4	4,9
			1
	$\sqrt{\frac{4}{}}$	4,9	
	$\overline{3}$	$\times \frac{1}{4}$	

On n'a pas la même multiplication à faire, ce n'est pas une suite géométique.

Conclusion : la suite (v_n) n'est ni arithmétique ni géométrique

- 4. On définit la suite w par : pour tout $n \in \mathbb{N}, w_n = v_n 13$.
 - (a) $w_0 = v_0 13 = 3 13 = \boxed{-10}$.
 - (b) Pour montrer que w est géométrique, on va montrer que $w_{n+1} = \text{constante} \times w_n$. $w_{n+1} = v_{n+1} 13 = 0, 9v_n + 1, 3 13 = 0, 9v_n 0, 9 \times 13 = 0, 9(v_n 13) = 0, 9w_n.$ Donc w est une suite géométrique de raison 0, 9.
 - (c) On en déduit que $w_n = w_0 \times raison^n = \boxed{-10 \times 0, 9^n}$
 - (d) Puisque $w_n = v_n 13$, on en déduit que $v_n = w_n + 13 = 13 10 \times 0, 9^n$.
- 5. On peut regarder à la calculatrice : $v_7 \approx 8, 2 < 8, 5$ et $v_8 \approx 8, 7 > 8, 5$ donc c'est à partir de n = 8. On peut aussi résoudre l'inéquation à l'aide du logarithme :

$$v_n > 8,5$$
 $13 - 10 \times 0,9^n > 8,5$
 $-10 \times 0,9^n > -4,5$
 $0,9^n < 0,45$
 $log(0,9^n) < log(0,45)$
 $n \times log(0,9) < log(0,45)$
 $n > \frac{log(0,45)}{log(0,9)}$
On remplace par la valeur
 -13
 $\div (-10)$
On "passe au logarithme"
 $log(a^x) = x \times log(a)$
 $\div log(0,9)$

Attention, dans la division log(0,9) est un nombre négatif donc on change le sens de l'inégalité!

L'ensemble des solutions est donc $\left[\frac{\log(0,45)}{\log(0,9)}; +\infty \right[$

Le premier entier plus grand que $\frac{log(0,45)}{log(0,9)}$ est 8. Ainsi la plus petite valeur de n telle que $v_n > 8,5$ est $\boxed{8}$.

6. On demande le nombre de questions différentes lorsqu'on arrive à la fin du $10^{\rm e}$ mois : ce n'est pas le nombre de questions du $10^{\rm e}$ mois! Le premier mois il y en a 300, et ensuite 130 nouvelles chaque mois. Il faut donc calculer $300 + 9 \times 130 = \boxed{1\ 470}$.

Partie B - Une autre modélisation

- 1. (a) Le calcul donne $u_0 = 3$, $u_1 \approx 4,09$ et $u_2 \approx 4,98$.
 - (b) Les valeurs trouvées sont donc proches de celles de la partie A.
- 2. On peut regarder à la calculatrice : $u_{12} \approx 8,46 < 8,5$ et $u_{13} \approx 8,55 > 8,5$ donc c'est à partir de n=13. On peut aussi résoudre l'inéquation à l'aide du logarithme :

$$u_n > 8,5$$

$$9 - 6 \times e^{-0,2n} > 8,5$$

$$-6 \times e^{-0,2n} > -0,5$$

$$e^{-0,2n} < \frac{0,5}{6}$$

$$\log(e^{-0,2n}) < \frac{0,5}{6}$$

$$-0,2n \times \log(e) < \log\left(\frac{0,5}{6}\right)$$

$$n > \frac{\log(\frac{0,5}{6})}{-0,2\log(e)}$$
On remplace par la valeur
$$\div(-6)$$
On "passe au logarithme"
$$\log(a^x) = x \times \log(a)$$

$$\div(-0,2\log(e))$$

L'ensemble des solutions est donc $\boxed{ \frac{log(\frac{0.5}{6})}{-0.2log(e)}; +\infty [}$

Le premier entier plus grand que $\frac{log(\frac{0.5}{6})}{-0,2log(e)}$ est 13. Ainsi la plus petite valeur de n telle que $u_n > 8,5$ est 13.

Partie C - Application

- 1. Dans la partie A, on a vu que le nombre de questions posées dépasse 850 quand n=8 c'est-à-dire au 9^e mois. Dans la partie B, cela se passe au 14^e mois. Ainsi, au plus tôt, cette embauche aura lieu le 9^e mois.
- 2. En regardant à la calculatrice, la modélisation 1 semble donner plus de questions mensuelles que la modélisation 2. Effectivement la première modélisation semble se stabiliser à 1 300 questions alors que la seconde à 900.

Exercice 2 - Donné par les inspecteurs en 2009

1. Entre u_1 et u_3 il y a 2 pas de calcul à faire, donc on a ajouté deux fois la raison. Ainsi $48-12=2\times raison$ et donc la raison vaut 18 réponse b

On pouvait aussi utiliser la formule $u_n = u_1 + (n-1) \times raison$, ici avec n = 3.

- 2. (u_n) est arithmétique, donc $u_n = u_0 + n \times raison$. Ainsi $u_n = 14\,000 + n \times 100$.
 - (v_n) est géométrique, donc $v_n = v_0 \times raison^n$ Ainsi $v_n = 6$ 500 × 1, 1^n.

On sait que (v_n) est croissante (car 1, 1 > 1), et on a vu qu'alors elle finirait forcément par dépasser (u_n) car une suite géométrique croissante finit toujours par dépasser une suite arithmétique.

On va donc regarder en 8, en 9 et en 131 et regarder où (v_n) est plus grande que (u_n) .

$$u_8 = 14800 > 13933 \approx v_8$$
; $u_9 = 14900 < 15326 \approx v_9$. Ainsi c'est en 9 réponse a

3. Le terme général s'écrit $u_n = 2n + 5$. C'est donc de la forme $u_0 + n \times raison$ donc c'est une suite arithmétique de raison 2 réponse c.