

informatics mathematics

A Space and Bandwidth Efficient Multicore Algorithm for the Particle-in-Cell (PIC) Method

Yann Barsamian, Arthur Charguéraud, Alain Ketterlin

Université de Strasbourg

INRIA Nancy - Grand Est (CAMUS Team) CNRS ICube Laboratory (ICPS Team)

PPAM 2017, Lublin (Poland) September 2017

1 / 19

General Context

ITER¹ tokamak²: controlled thermonuclear fusion

¹"The way" (in Latin) to produce energy (Cadarache, France) ²Токамак: <u>то</u>роидальная <u>ка</u>мера с <u>ма</u>гнитными <u>к</u>атушками (toroidal chamber with magnetic coils)

$$\begin{pmatrix}
\frac{\partial f}{\partial t} + \vec{\nabla} \cdot \nabla_{\vec{X}} f - \vec{E} \cdot \nabla_{\vec{V}} f = 0 & \text{Vlasov} \\
\nabla_{\vec{X}} \vec{E} = \rho = 1 - \int f \, d\vec{V} & \text{Poisson}
\end{cases}$$

- distribution function f: N numerical particles (red)
- electric field \vec{E} and charge density ρ : 2d grids (black)

$$\begin{cases}
\frac{\partial f}{\partial t} + \overrightarrow{v} \cdot \nabla_{\overrightarrow{x}} f - \overrightarrow{E} \cdot \nabla_{\overrightarrow{v}} f = 0 & \text{Vlasov} \\
\nabla_{\overrightarrow{x}} \overrightarrow{E} = \rho = 1 - \int f \ d \overrightarrow{v} & \text{Poisson}
\end{cases}$$

- distribution function f: N numerical particles (red)
- electric field \vec{E} and charge density ρ : 2d grids (black)

 Physical effects on small scale (+ large scale)

• Noise (numerical errors when *N* is small)

• Frequent particle motion

$$\begin{cases}
\frac{\partial f}{\partial t} + \overrightarrow{v} \cdot \nabla_{\overrightarrow{x}} f - \overrightarrow{E} \cdot \nabla_{\overrightarrow{v}} f = 0 & \text{Vlasov} \\
\nabla_{\overrightarrow{x}} \overrightarrow{E} = \rho = 1 - \int f \ d \overrightarrow{v} & \text{Poisson}
\end{cases}$$

- distribution function f: N numerical particles (red)
- electric field \vec{E} and charge density ρ : 2d grids (black)

- Physical effects on small scale (+ large scale)
 ⇒ increase ncx × ncy (1,000 × 1,000)
- Noise (numerical errors when *N* is small)

• Frequent particle motion

$$\begin{cases}
\frac{\partial f}{\partial t} + \vec{v} \cdot \nabla_{\vec{x}} f - \vec{E} \cdot \nabla_{\vec{v}} f = 0 & \text{Vlasov} \\
\nabla_{\vec{x}} \vec{E} = \rho = 1 - \int f \, d \vec{v} & \text{Poisson}
\end{cases}$$

- distribution function f: N numerical particles (red)
- electric field \vec{E} and charge density ρ : 2d grids (black)

- Physical effects on small scale (+ large scale)
 ⇒ increase ncx × ncy (1,000 × 1,000)
- Noise (numerical errors when N is small) \Rightarrow increase $\frac{N}{ncx \times ncy}$ (10,000 to 1,000,000)
- Frequent particle motion

Code Verification: Ландау (Landau) Damping

basic test case with known mathematical approximate solution
needs specific noise reduction techniques or a lot of particles

So the only questions that remain are...

How to design an efficient code when particles move frequently? (up to 98% of particles change cell at each iteration)

How to derive a code that scales up well on thousands of cores, using MPI + OpenMP?

Marconi supercomputer

Particle-in-Cell Pseudo-Code

Initia 1 2	alization: Initialize N particles Compute $ ho$ and E at $t=0$	<pre>icell, dx, dy, vx, vy of size [N] rho, Ex, Ey of size [ncx] [ncy]</pre>					
Algorithm:							
3	Foreach time iteration do						
4	If (condition) then						
5	Sort the particles ³	$\mathcal{O}(N)$ counting sort					
6	End If						
7	Set all cells of $ ho$ to 0						
8	Foreach particle do						
9	Update the velocity	$v + = -E\Delta t$					
10	Update the position	$x + = v \Delta t$					
11	Accumulate the charge on the nearest $ ho$ cells						
12	End Foreach						
13	Compute <i>E</i> from ρ	FFT Poisson solver					
14	End Foreach						

³Decyk, Karmesin, de Boer & Liewer (1996)

Particle-in-Cell Pseudo-Code

Initialization:	
1 Initialize N particles	icell, dx, dy, vx, vy of size [N]
2 Compute ρ and E at $t = 0$	<pre>rho, Ex, Ey of size [ncx] [ncy]</pre>
Algorithm:	Execution time breakdown
3 Foreach time iteration do	
4 If (condition) then	
5 Sort the particles ³	10%
6 End If	
7 Set all cells of ρ to 0	
8 Foreach particle do	
9 Update the velocity	40%
10 Update the position	35%
11 Accumulate the char	ge on the nearest ρ cells 15%
12 End Foreach	
13 Compute <i>E</i> from ρ	<1%4
14 End Foreach	
-	-

³Decyk, Karmesin, de Boer & Liewer (1996)

 $^{4}\mbox{Any}$ difference in system hardware or software design or configuration may affect actual performance (-:

To sort or not to sort?

	Sort	Upd. v	Upd. x	Deposit	Total
Do not sort	0.0	98.0	64.6	35.9	199.0
Sort every 100	3.6	78.3	64.4	25.6	177.0
Always sort	209.0	66.3	64.2	13.4	353.0

200,000,000 particles, 128×128 mesh, $\Delta t = 0.1$, 500 iterations.

Architecture: 18 threads, 4 memory channels, Intel Broadwell (2016).

Periodic sorting: better data locality, and shorter overall time. Best frequency?⁵

Sorting at each iteration⁶: enhancement of the data locality & vectorization of the update velocities loop, but too costly.

Efficient data structure to keep particles sorted^{7,8}: avoid the sorting step.

⁵Dorobisz, Kotwica, Niemiec, Kobzar, Bohdan & Wiatr (in 40 minutes)
 ⁶Lanti, Tran, Jocksch, Hariri, Brunner, Gheller & Villard (2016)
 ⁷Durand, Raffin & Faure (2012)
 ⁸Nakashima, Summura, Kikura & Miyake (2017)

Y. Barsamian (Strasbourg, France) Chunk bags for 2d Particle-in-Cell (PPAM'17) 11/09/2017

Cell Index plus Offset

Particle at $(x_{physical}, y_{physical}) \in [x_{min}; x_{max}) \times [y_{min}; y_{max})$ Position renormalized on the grid: $(x, y) \in [0; ncx) \times [0; ncy)$

28 bytes per particle: int icell, float dx, dy, double vx, vy⁹.

 $i_{cell} \in \{0, 1, \dots ncx \times ncy - 1\}: \text{ one-to-one mapping with}$ $(i_x, i_y) \in \{0, 1, \dots ncx - 1\} \times \{0, 1, \dots ncy - 1\}, \text{ e.g.}:$ $\bullet i_{cell} = i_x \times ncy + i_y \quad \bullet \begin{cases} i_x = i_{cell}/ncy \\ i_y = modulo(i_{cell}, ncy) \end{cases}$

⁹Bowers, Albright, Yin, Bergen & Kwan (2008)

Cell Index plus Offset

Particle at $(x_{physical}, y_{physical}) \in [x_{min}; x_{max}) \times [y_{min}; y_{max})$ Position renormalized on the grid: $(x, y) \in [0; ncx) \times [0; ncy)$

24 bytes per particle: int icell, float dx, dy, double vx, vy⁹.

First improvement of our method, shared with previous works that sort particles at each iteration: 14% memory saved.

Additional memory gains from our method: avoid allocating too many holes in the data structure.

⁹Bowers, Albright, Yin, Bergen & Kwan (2008)

Goals for an Efficient Data Structure

In addition to keep the particles sorted at all times, we want:

- robustness: static arrays cannot simulate test cases in which a cell contains more particles than the statically chosen size
- cache efficiency: linked lists cause too many memory indirections
- no hidden constants: vectors (resizable arrays) incur a factor 2 overhead because of the resize operations
- multicore efficiency (1): as little atomic operations as possible
- multicore efficiency (2): avoid global refactoring of the data structure

Chunk Bags: An Example

10 / 19

Chunk Bags: Particle Arrays

chunkbag particlesNext[nbCores][nbCells]

particlesNext[i][j]: the particles that the core *i* has treated and that have now, after update, the cell identifier *j*.

- race conditions are avoided
- particlesNext[0][j], particlesNext[1][j]... particlesNext[nbCores - 1][j] need to be merged for the next iteration (into particles[j])

Chunk Bags: Merge Operation

Chunk Bags: Merge Operation

Hybrid Parallel and Vectorized Code

- Among MPI processes: particle decomposition (each process keeps a constant subset of the particles and the whole grid)
- Advantage: computations are automatically balanced
- Drawback: communication overhead (MPI_ALLREDUCE) when using more than a few thousand MPI processors
- On one socket: OpenMP pragmas #pragma omp for on the particle loop reduction(+:rho[0:ncx*ncy][0:4])¹¹ for accumulation
- On one core: automatic vectorization by icc and gcc loop fission for update-velocities vectorization over the corners for accumulation¹²

¹¹Since OpenMP 4.5 in C.

¹²Vincenti, Lobet, Lehe, Sasanka & Vay (2016)

Strong Scaling on 18 Cores & 4 Memory Channels

13% slower on single core, 36% faster on 18 cores. 128×128 grid, $900 \cdot 10^6$ particles, 100 iterations. Intel Broadwell (2016).

¹³Barsamian, Hirstoaga & Violard (2017)

Memory Bandwidth on 18 Cores & 4 Memory Channels

With $1.8\cdot 10^9$ particles: 65% of the reachable peak given by the Stream test (theoretical peak: 76.8 GB/s). Bandwidth formula: nblterations \times nbParticles \times sizeof(particle) \times 2/executionTime. 128x128 grid, 100 \cdot 10⁶ particles / core, 100 iterations. Intel Broadwell (2016).

¹⁴McCalpin (1995) - Code v5.10 (2013)

92% parallel efficiency on 2,304 cores (230 billion particles) 128×128 grid, $100 \cdot 10^6$ particles / core, 100 iterations. Intel Broadwell (2016).

Example Simulation: Two-stream instability

 $(x,y) \in [0;4\pi)^2$, 128×128 grid, $\Delta t = 0.05$, initial condition¹⁵: $f(\overrightarrow{x},\overrightarrow{v},0) = \left(1+0.1\left(\cos\left(\frac{y}{2}\right)+\cos\left(\frac{x+y}{2}\right)\right)\right)\frac{v_x^2}{2\pi}e^{-\frac{v_x^2+v_y^2}{2}}$

11/09/2017

17 / 19

¹⁵Barsamian, Bernier, Hirstoaga & Mehrenberger, 2017

Y. Barsamian (Strasbourg, France) Chunk bags for 2d Particle-in-Cell (PPAM'17)

Example Simulation: Two-stream instability

 $(x,y) \in [0;4\pi)^2$, 128×128 grid, $\Delta t = 0.05$, initial condition¹⁵: $f(\overrightarrow{x},\overrightarrow{v},0) = \left(1+0.1\left(\cos\left(\frac{y}{2}\right)+\cos\left(\frac{x+y}{2}\right)\right)\right)\frac{v_x^2}{2\pi}e^{-\frac{v_x^2+v_y^2}{2}}$

¹⁵Barsamian, Bernier, Hirstoaga & Mehrenberger, 2017

Y. Barsamian (Strasbourg, France) Chunk bags for 2d Particle-in-Cell (PPAM'17)

11/09/2017 17 / 19

Example Simulation: Two-stream instability

 $(x,y) \in [0;4\pi)^2$, 128×128 grid, $\Delta t = 0.05$, initial condition¹⁵: $f(\overrightarrow{x},\overrightarrow{v},0) = \left(1+0.1\left(\cos\left(\frac{y}{2}\right)+\cos\left(\frac{x+y}{2}\right)\right)\right)\frac{v_x^2}{2\pi}e^{-\frac{v_x^2+v_y^2}{2}}$

Y. Barsamian (Strasbourg, France) Chunk bags for 2d Particle-in-Cell (PPAM'17)

Conclusions

- contributions
 - introduce chunk bags to keep particles sorted at all time without significant memory overhead
 - design an algorithm where each particle is loaded/written exactly once from/to main memory per iteration
 - and where particles are processed using state-of-the-art vectorization techniques, with efficient OpenMP load balancing
- on each socket (18 cores & 4 memory channels), near-optimal memory consumption <u>and</u> bandwith usage <u>and</u> processing time
 - 861 million particles / second, or 48 million / second / core
 - 65% of the maximum bandwidth
- 92% parallel efficiency on 2,304 cores with 230 billion particles

ybarsamian@unistra.fr

Y. Barsamian (Strasbourg, France) Chunk bags for 2d Particle-in-Cell (PPAM'17) 11/09/2017 19 / 19

That's all Folks!