JCU3E o= M

A Space and Bandwidth Efficient Multicore

Algorithm for the Particle-in-Cell (PIC) Method

Yann Barsamian, Arthur Charguéraud, Alain Ketterlin

’ IH Université de Strasbourg H H“

INRIA Nancy - Grand Est (CAMUS Team)
CNRS ICube Laboratory (ICPS Team)

PPAM 2017, Lublin (Poland)
CINECA September 2017

f
) EUROfusion
\_-_4'

Y. Barsamian (Strasbourg, France) Chunk bags for 2d Particle-in-Cell (PPAM’'17) 11/09/2017 1/19



General Context

=

ITER! tokamak?: controlled thermonuclear fusion

1“The way" (in Latin) to produce energy (Cadarache, France)
2Tokamak: TopowgabHas Kamepa C MarHUTHLIMU KaTylikamu (toroidal
chamber with magnetic coils)

. Barsamian (Strasbourg, France) Chunk bags for 2d Particle-in-Cell (PPAM’'17) 11/09/2017



Kinetic Modeling with Particle-in-Cell Methods

f'
%+7.v7f_f.v7f:0 Vlasov
Vyﬁ =p=1 —/f dv Poisson

@ distribution function f: N numerical particles (red)
o electric field E and charge density p: 2d grids (black)

Chunk bags for 2d Particle-in-Cell (PPAM’'17) 11/09/2017

Y. Barsamian (Strasbourg, France)

3/19



Kinetic Modeling with Particle-in-Cell Methods

f'
%+7.v7f_f.v7f:0 Vlasov
Vyﬁ =p=1 —/f dv Poisson

@ distribution function f: N numerical particles (red)
o electric field E and charge density p: 2d grids (black)

@ Physical effects on small
scale (+ large scale)

@ Noise (numerical errors
when N is small)

@ Frequent particle motion

Chunk bags for 2d Particle-in-Cell (PPAM’'17) 11/09/2017

Y. Barsamian (Strasbourg, France)



Kinetic Modeling with Particle-in-Cell Methods

f'
%+7.v7f_f.v7f:0 Vlasov

Vyﬁ =p=1- / fdv Poisson

@ distribution function f: N numerical particles (red)

o electric field E and charge density p: 2d grids (black)

RNNYRSNINANEINIK ° i

R RO DAL I8 Physical effects on small
RN EDNADHW scale (+ large scale)
£3%; LR = increase ncx X ncy
PSR (1,000 x 1,000)

@ Noise (numerical errors
when N is small)

s e SO
.'..'.\oo. o ly 8908 | o

. 3

L3 &TY ¢
o %,

oty

&

cER TN
) °| 79

Tl o @ Frequent particle motion

Y. Barsamian (Strasbourg, France) Chunk bags for 2d Particle-in-Cell (PPAM’'17) 11/09/2017




Kinetic Modeling with Particle-in-Cell Methods

f'
%+7.v7f_f.v7f:0 Vlasov
Vyﬁ =p=1 —/f dv Poisson

@ distribution function f: N numerical particles (red)

o electric field E and charge density p: 2d grids (black)

@ Physical effects on small
scale (+ large scale)
= increase ncx X ncy
(1,000 x 1,000)

@ Noise (numerical errors

when N is small)

= increase ———
ncx x ncy

(10,000 to 1,000, 000)
@ Frequent particle motion

Y. Barsamian (Strasbourg, France) Chunk bags for 2d Particle-in-Cell (PPAM’'17) 11/09/2017




Code Verification: Jlangay (Landau) Damping

@ basic test case with known mathematical approximate solution
@ needs specific noise reduction techniques or a lot of particles

1 F T T T T
01 s Linearized solution ——— ]
L 50 x 10° particles —— 1
0.01 - 800 x 10° particles —— 7

0.001 409.6 x 10° particles ]

&
Q
& 0.0001 E ]
2 1e-05 ¢ ~7 . .
8 1e06 ¢ [ \ /\ /‘
w 1e-07 E \ ]
1e-08 F 4
le-09 - ‘ ‘ ‘ ‘ ‘ ]
o 1 2 3 4 5 6 7 8 9 10

Time (adimensionned)

(x,y) € [0; 47)?, 128 x 128 grid, At = 0.1, initial condition (Jlangay, 1946):

F(¥X,V,0) = (1+0.01cos (x/2) cos (y/2)) e_@/(hr)

Y. Barsamian (Strasbourg, France) Chunk bags for 2d Particle-in-Cell (PPAM’'17) 11/09/2017



Y. Barsamian (Strasbourg, France)

How to design an efficient
code when particles move fre-
quently? (up to 98% of parti-
cles change cell at each itera-
tion)

{1l /

Chunk bags for 2d Particle-in-Cell (PPAM’'17)

So the only questions that remain are. ..

How to derive a code that scales
up well on thousands of cores,
using MPI + OpenMP?

i = =
rcomputer

Marconi supe

11/09/2017



Particle-in-Cell Pseudo-Code

I 1
Initialization:

1 Initialize N particles icell, dx, dy, vx, vy of size [N]
2 Compute pand E att =0 rho, Ex, Ey of size [ncx] [ncy]

Algorithm:
3 Foreach time iteration do

4 If (condition) then

5 Sort the particles® O(N) counting sort
6 End If

7 Set all cells of p to 0

8 Foreach particle do

9 Update the velocity v+ = —EAt
10 Update the position x+ = vAt
11 Accumulate the charge on the nearest p cells

12 End Foreach

13 Compute E from p FFT Poisson solver

14  End Foreach

3Decyk, Karmesin, de Boer & Liewer (1996)

Y. Barsamian (Strasbourg, France) Chunk bags for 2d Particle-in-Cell (PPAM’'17) 11/09/2017 6 /19



Particle-in-Cell Pseudo-Code

I 1
Initialization:

1 Initialize N particles icell, dx, dy, vx, vy of size [N]
2 Compute pand E at t =0 rho, Ex, Ey of size [ncx] [ncy]

Algorithm: Execution time breakdown
3 Foreach time iteration do

4 If (condition) then

5 Sort the particles® 10%
6 End If

7 Set all cells of p to 0

8 Foreach particle do

9 Update the velocity 40%
10 Update the position 35%
11 Accumulate the charge on the nearest p cells 15%
12 End Foreach

13 Compute E from p <1%*

14  End Foreach

3Decyk, Karmesin, de Boer & Liewer (1996)
*Any difference in system hardware or software design or configuration may
affect actual performance (-:

Y. Barsamian (Strasbourg, France) Chunk bags for 2d Particle-in-Cell (PPAM’'17) 11/09/2017 6 /19



To sort or not to sort?

Sort Upd. v | Upd. x | Deposit | Total
Do not sort 0.0 98.0 64.6 35.9 199.0
Sort every 100 3.6 78.3 64.4 25.6
Always sort 209.0 66.3 64.2 13.4 353.0

200,000,000 particles, 128 x 128 mesh, At = 0.1, 500 iterations.
Architecture: 18 threads, 4 memory channels, Intel Broadwell (2016).

Periodic sorting: better data locality, and
. Best frequency?®

Sorting at each iteration®: enhancement of the
data locality & vectorization of the update ve-
locities loop, but too costly.

Efficient data structure to keep particles
sorted”-8: avoid the sorting step.
®Dorobisz, Kotwica, Niemiec, Kobzar, Bohdan & Wiatr (|n 40 mmutes)
®Lanti, Tran, Jocksch, Hariri, Brunner, Gheller & Villard (2016)
"Durand, Raffin & Faure (2012)
8Nakashima, Summura, Kikura & Miyake (2017)

Y. Barsamian (Strasbourg, France) Chunk bags for 2d Particle-in-Cell (PPAM’'17) 11/09/2017 7/ 19



Cell Index plus Offset

Particle at (Xphysicahyphysical) € [Xmin; Xmax) X [}/min;}/max)

Position renormalized on the grid: (x, y) € [0; ncx) x [0; ncy)

y
iy+1
dyI __________ _T x=1i_x-+dx
-y ix T ix+l y=i_y+dy
0 - X
dx

28 bytes per particle: int icell, float dx, dy, double vx, vy°.

icen € {0,1,...ncx X ncy — 1}: one-to-one mapping with
(i_x,i_y)e{0,1,...ncx —1} x {0,1,...ncy — 1}, e.g.:
i X = icey/ncy

@ ey =1 _XxXXncy+i_y °
iy = modulo(ice, ncy)

°Bowers, Albright, Yin, Bergen & Kwan (2008)

Y. Barsamian (Strasbourg, France) Chunk bags for 2d Particle-in-Cell (PPAM’'17) 11/09/2017 8/ 19



LelHndexplus Offset

Particle at (Xphysicahyphysical) € [Xmin; Xmax) X [}/min;}/max)

Position renormalized on the grid: (x, y) € [0; ncx) x [0; ncy)

y
iy+1
dyI __________ _T {x:i_x—i—dx
-y ix 1 dix+l y=i_y+dy
0 - X
dx

24 bytes per particle: int-icell- float dx, dy, double vx, vy°.

First improvement of our method, shared with previous works that
sort particles at each iteration: 14% memory saved.

Additional memory gains from our method: avoid allocating too
many holes in the data structure.

°Bowers, Albright, Yin, Bergen & Kwan (2008)

Y. Barsamian (Strasbourg, France) Chunk bags for 2d Particle-in-Cell (PPAM’'17) 11/09/2017 8/ 19



Goals for an Efficient Data Structure

In addition to keep the particles sorted at all times, we want:
@ robustness: static arrays cannot simulate test cases in which a
cell contains more particles than the statically chosen size

@ cache efficiency: linked lists cause too many memory
indirections

@ no hidden constants: vectors (resizable arrays) incur a factor 2
overhead because of the resize operations

@ multicore efficiency (1): as little atomic operations as possible

@ multicore efficiency (2): avoid global refactoring of the data
structure

Y. Barsamian (Strasbourg, France) Chunk bags for 2d Particle-in-Cell (PPAM’'17) 11/09/2017 9/ 19



Chunk Bags: An Example

front back back_head back_end10

L X~ 1 X1 X_|
X X X X\ NULL }next
7 9 6 }size

3\
data

"Hanson (1990)

Y. Barsamian (Strasbourg, France) Chunk bags for 2d Particle-in-Cell (PPAM'17) 11/09/2017 10 / 19



Chunk Bags: Particle Arrays

chunkbag particles[nbCells]
KR IX X[ ... _[X[X[X[X]

particles with cell identifier 1

particles with cell identifier 0

chunkbag particlesNext [nbCores] [nbCells]

particlesNext[i] [j]: the particles that the core i has treated
and that have now, after update, the cell identifier j.

@ race conditions are avoided

@ particlesNext[0] [j], particlesNext[1][j]...
particlesNext [nbCores - 1][j] need to be merged for the
next iteration (into particles[j])

Y. Barsamian (Strasbourg, France) Chunk bags for 2d Particle-in-Cell (PPAM’'17) 11/09/2017 11 /19



Chunk Bags: Merge Operation

ESBNESEN XX XX

X X XN NULL X X NULL
6 10 9

L

Y. Barsamian (Strasbourg, France) Chunk bags for 2d Particle-in-Cell (PPAM'17) 11/09/2017 12 /19



Chunk Bags: Merge Operation

[ X [ XX
X X
6 10

Y. Barsamian (Strasbourg, France) Chunk bags for 2d Particle-in-Cell (PPAM'17) 11/09/2017 12 /19



Hybrid Parallel and Vectorized Code

@ Among MPI processes: particle decomposition (each process
keeps a constant subset of the particles and the whole grid)

. computations are automatically balanced

@ Drawback: communication overhead (MPI_ALLREDUCE) when
using more than a few thousand MPI processors

@ On one socket: OpenMP pragmas
#pragma omp for on the particle loop
reduction(+:rho[0:ncx*ncy] [0:4]1)! for accumulation

@ On one core: automatic vectorization by icc and gcc
loop fission for update-velocities
vectorization over the corners for accumulation'?

1Since OpenMP 4.5 in C.
2Vincenti, Lobet, Lehe, Sasanka & Vay (2016)

Y. Barsamian (Strasbourg, France) Chunk bags for 2d Particle-in-Cell (PPAM’'17) 11/09/2017



Strong Scaling on 18 Cores & 4 Memory Channels

1600
1400
1200
1000
800
600
400
200

Execution time (s)

Structure of Arrays, Periodic sorting!>
Chunk bags, Always Sorted

XCAX8.0x81 1, x82 ¢

1 core 2 cores 4 cores 8 cores 16 cores 18 cores

13% slower on single core, 36% faster on 18 cores.
128x128 grid, 900 - 10° particles, 100 iterations. Intel Broadwell (2016).

3Barsamian, Hirstoaga & Violard (2017)

Y. Barsamian (Strasbourg, France) Chunk bags for 2d Particle-in-Cell (PPAM’'17) 11/09/2017

14 / 19



Memory Bandwidth on 18 Cores & 4 Memory Channels

T T
Stream!*  —

60 Chunk bags msm
50

40
30
20
10

Memory bandwidth (GB/s)

1 core 2cores 4 cores 8 cores 16 cores 18 cores

With 1.8 - 10° particles: 65% of the reachable peak given by the
Stream test (theoretical peak: 76.8 GB/s). Bandwidth formula:
nblterations x nbParticles x sizeof(particle) x 2/executionTime.
128x128 grid, 100 - 10° particles / core, 100 iterations. Intel Broadwell (2016).

“McCalpin (1995) - Code v5.10 (2013)

Y. Barsamian (Strasbourg, France) Chunk bags for 2d Particle-in-Cell (PPAM’'17) 11/09/2017 15 / 19



Weak Scaling on 2,304 Cores

Execution time (s)

300
250
200
150
100

50

T T T T
- Total simulation time
Cross-socket communication time — — —

1% 1%

1% 2% 2% 5% 6

9 ™ >
Total number of cores used

92% parallel efficiency on 2,304 cores (230 billion particles)
128x128 grid, 100 - 10° particles / core, 100 iterations. Intel Broadwell (2016).

X D A0 NSV
NI N RN ST | MR AN

o

™
S
P

Y. Barsamian (Strasbourg, France)

Chunk bags for 2d Particle-in-Cell (PPAM’'17)

11/09/2017

16 / 19



Example Simulation: Two-stream instability

(x,y) € [0;4m)?, 128 x 128 grid, At = 0.05, initial condition!®:

F(X,V,0) = <1+o.1 <cos (g) + cos (%))) V_ie_@

Iteration 0

'SBarsamian, Bernier, Hirstoaga & Mehrenberger, 2017

Y. Barsamian (Strasbourg, France) Chunk bags for 2d Particle-in-Cell (PPAM’'17) 11/09/2017 17 / 19



Example Simulation: Two-stream instability

(x,y) € [0;4m)?, 128 x 128 grid, At = 0.05, initial condition!®:

F(X,V,0) = <1+o.1 <cos (g) + cos (%))) ge_@

“
w
.
- I
<f 1
Ryl
Min: 0.9635

Iteration 100

'SBarsamian, Bernier, Hirstoaga & Mehrenberger, 2017

Y. Barsamian (Strasbourg, France) Chunk bags for 2d Particle-in-Cell (PPAM’'17) 11/09/2017



Example Simulation: Two-stream instability

(x,y) € [0;4m)?, 128 x 128 grid, At = 0.05, initial condition!®:

F(X,V,0) = <1+o.1 <cos (g) + cos (%))) ge_@

1079
0.9738

0.8690

0.7643
Max: 1183
Min: 0.7643

[teration 1,000

'SBarsamian, Bernier, Hirstoaga & Mehrenberger, 2017

11/09/2017

Y. Barsamian (Strasbourg, France) Chunk bags for 2d Particle-in-Cell (PPAM’'17)



Conclusions

contributions
@ introduce chunk bags to keep particles sorted at all time
without significant memory overhead
o design an algorithm where each particle is loaded /written
exactly once from/to main memory per iteration
@ and where particles are processed using state-of-the-art
vectorization techniques, with efficient OpenMP load balancing

on each socket (18 cores & 4 memory channels), near-optimal
memory consumption and bandwith usage and processing time

@ 861 million particles / second, or 48 million / second / core
@ 65% of the maximum bandwidth

@ 92% parallel efficiency on 2,304 cores with 230 billion particles

Y. Barsamian (Strasbourg, France) Chunk bags for 2d Particle-in-Cell (PPAM’'17) 11/09/2017 18 / 19



ybarsamian@unistra.fr

Y. Barsamian (Strasbourg, France) Chunk bags for 2d Particle-in-Cell (PPAM’'17) 11/09/2017 19 / 19



