Devoir maison n°8 Correction

Exercice n°86 p.130

Partie A.

1. (a) f est une différence, et le second terme est un produit :

$$\begin{cases} u(x) &= \frac{1}{4}(x+1) \\ v(x) &= e^{-x} \end{cases} \begin{cases} u'(x) &= \frac{1}{4} \\ v'(x) &= -e^{-x} \end{cases}$$

Ainsi
$$f'(x) = 1 - \left(\frac{1}{4} \times e^{-x} + \frac{1}{4}(x+1) \times (-e^{-x})\right) = 1 - \left(\frac{1}{4} \times e^{-x} - \frac{1}{4}xe^{-x} - \frac{1}{4}e^{-x}\right) = 1 - \left(\frac{1}{4} \times e^{-x} + \frac{1}{4}(x+1) \times (-e^{-x})\right) = 1 - \left(\frac{1}{4} \times e^{-x} - \frac{1}{4}xe^{-x} - \frac{1}{4}e^{-x}\right) = 1 - \left(\frac{1}{4} \times e^{-x} - \frac{1}{4}xe^{-x} - \frac{1}{4}xe^{-x}\right) = 1 - \left(\frac{1}{4} \times e^{-x} - \frac{1}{4}xe^{-x} - \frac{1}{4}xe^{-x}\right) = 1 - \left(\frac{1}{4} \times e^{-x} - \frac{1}{4}xe^{-x} - \frac{1}{4}xe^{-x}\right) = 1 - \left(\frac{1}{4} \times e^{-x} - \frac{1}{4}xe^{-x} - \frac{1}{4}xe^{-x}\right) = 1 - \left(\frac{1}{4} \times e^{-x} - \frac{1}{4}xe^{-x} - \frac{1}{4}xe^{-x}\right) = 1 - \left(\frac{1}{4} \times e^{-x} - \frac{1}{4}xe^{-x} - \frac{1}{4}xe^{-x}\right) = 1 - \left(\frac{1}{4} \times e^{-x} - \frac{1}{4}xe^{-x} - \frac{1}{4}xe^{-x}\right) = 1 - \left(\frac{1}{4} \times e^{-x} - \frac{1}{4}xe^{-x} - \frac{1}{4}xe^{-x}\right) = 1 - \left(\frac{1}{4} \times e^{-x} - \frac{1}{4}xe^{-x} - \frac{1}{4}xe^{-x}\right) = 1 - \left(\frac{1}{4} \times e^{-x} - \frac{1}{4}xe^{-x} - \frac{1}{4}xe^{-x}\right) = 1 - \left(\frac{1}{4} \times e^{-x} - \frac{1}{4}xe^{-x} - \frac{1}{4}xe^{-x}\right) = 1 - \left(\frac{1}{4} \times e^{-x} - \frac{1}{4}xe^{-x} - \frac{1}{4}xe^{-x}\right) = 1 - \left(\frac{1}{4} \times e^{-x} - \frac{1}{4}xe^{-x} - \frac{1}{4}xe^{-x}\right) = 1 - \left(\frac{1}{4} \times e^{-x} - \frac{1}{4}xe^{-x} - \frac{1}{4}xe^{-x}\right) = 1 - \left(\frac{1}{4} \times e^{-x} - \frac{1}{4}xe^{-x} - \frac{1}{4}xe^{-x}\right) = 1 - \left(\frac{1}{4} \times e^{-x} - \frac{1}{4}xe^{-x} - \frac{1}{4}xe^{-x}\right) = 1 - \left(\frac{1}{4} \times e^{-x} - \frac{1}{4}xe^{-x} - \frac{1}{4}xe^{-x}\right) = 1 - \left(\frac{1}{4} \times e^{-x} - \frac{1}{4}xe^{-x} - \frac{1}{4}xe^{-x}\right) = 1 - \left(\frac{1}{4} \times e^{-x} - \frac{1}{4}xe^{-x}\right) = 1 - \left(\frac{1}{4} \times e^{-x}\right) = 1 - \left(\frac{1}{4} \times e$$

 f^\prime est également une somme et le second terme un produit :

$$\begin{cases} u(x) &= \frac{1}{4}x \\ v(x) &= e^{-x} \end{cases} \begin{cases} u'(x) &= \frac{1}{4} \\ v'(x) &= -e^{-x} \end{cases}$$

Ainsi
$$f''(x) = 0 + \left(\frac{1}{4} \times e^{-x} + \frac{1}{4}x \times (-e^{-x})\right) = \boxed{\frac{1}{4}e^{-x}(1-x)}$$

(b) On peut alors construire le tableau de variations suivant :

x	$-\infty$	1	$+\infty$
$\mathbf{Sgn.}$ $f''(x)$	+	0	
Var. f'	$-\infty$	$1 + \frac{1}{4}e^{-1}$	0

Pour l'étude des limites : en $-\infty$ les règles de produit et d'addition permettent de répondre directement. En $+\infty$ il faut utiliser le fait que l'exponentielle l'emporte sur les puissances.

D'après le théorème des valeurs intermédiaires dans le cas strictement monotone : $\exists ! x \in]-1,21;-1,20[$ tel que f'(x)=0. Dans la suite, cet unique antécédent de 0 est noté α , comme dans l'énoncé.

2. (a) Puisque f' est croissante sur $]-\infty;1]$, on en déduit que f' est strictement négative sur $]-\infty;\alpha[$, s'annule en α , et est strictement positive sur $]\alpha;1]$. Ensuite f' est strictement décroissante et tend vers 0 en $+\infty$, ainsi elle reste strictement croissante jusqu'en $+\infty$.

On déduit le tableau suivant :

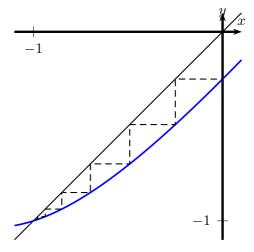
x	$-\infty$		α		$+\infty$
$\begin{array}{ c c } \mathbf{Sgn.} \\ f'(x) \end{array}$		_	0	+	
Var.	+∞ 、		$f(\alpha)$		<u>,</u> +∞

(b) $-1 > \alpha$ donc f est strictement croissante sur [-1;0]. Or f(-1) = -1 et f(0) = -0.25 donc $\forall x \in I, f(x) \in [-1;-0;25] \subset I$.

On a bien démontré que $\forall x \in I, f(x) \in I$.

Partie B.

1. En utilisant la représentation graphique, on peut conjecturer que u est strictement décroissante et convergente vers -1:



2. (a) Posons $P_n : \ll -1 < u_n < 0 \gg$.

Initialisation: pour n = 1, $u_1 = f(u_0) = f(0) = -0.25$ et -1 < -0.25 < 0 donc P(1) est vraie.

 $H\acute{e}r\acute{e}dit\acute{e}$: Supposons P(n) vraie et démontrons P(n+1).

Hérédité : Supposons
$$P(n)$$
 vraie et démontrons $P(n+1)$.

 $-1 < u_n < 0$
 $f(-1) < f(u_n) < f(0)$
 $-1 < u_{n+1} < -0, 25$
 $-1 < u_{n+1} < 0$
On compose par f qui est strictement croissante sur $[-1; 0]$
On remplace par les valeurs
 $-0, 25 < 0$

Conclusion : On vient de démontrer que $\forall n \in \mathbb{N}^*, -1 < u_n < 0$.

(b) En regardant l'expression de f(x), on voit que $u_{n+1} - u_n$ va se simplifier et qu'on pourra étudier facilement son signe:

$$u_{n+1} - u_n = f(u_n) - u_n = u_n - \frac{1}{4}(u_n + 1)e^{-u_n} - u_n = -\frac{1}{4}(u_n + 1)e^{-u_n}$$

On sait que $\forall n \in \mathbb{N}^*, -1 < u_n < 0$ ainsi $0 < u_n + 1 < 1$. L'exponentielle est toujours strictement positive également, ainsi par règle des signes $u_{n+1} - u_n$ est toujours strictement négatif donc u est strictement décroissante

(c) u est strictement décroissante et minorée (par -1) donc elle est convergente. Sa limite ℓ vérifie $f(\ell) = \ell$, il nous faut résoudre cette équation :

$$\ell - \frac{1}{4}(\ell+1)e^{-\ell} = \ell - \frac{1}{4}(\ell+1)e^{-\ell} = 0 - \ell$$

Un produit de facteurs est nul si et seulement si l'un au moins des facteurs est nul. Or l'exponentielle ne s'annule jamais, ainsi c'est donc $\ell + 1$ qui doit être nul, donc $\ell = -1$.