Exercise 1

Below you will find information about temperatures in Greece and Sweden. The information for one of the countries is in Table 1:

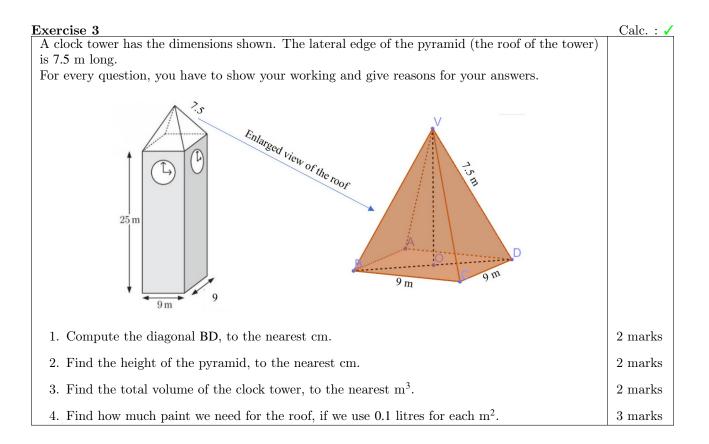
Table 1.													
Month	Jan	Feb	March	April	May	June	July	Aug	Sep	Oct	Nov	Dec	
Temperature (řC)	-2	-2	1	6	10	14	18	17	13	7	4	0	
For the other country, we know the information below: Table 2.													
Mean (řC)					19								
	Median (řC)					19							
Mode (řC)					25								

1. Calculate the mean, median, mode and interquartile range for the data set given in Table 1. 4 marks (Show your working)

18

10

- 2. Using statistical data, which of the data sets is for Sweden and which one is for Greece? 2 marks Explain your choice.
- 3. In which country the temperatures are more homogenous? Explain why.


Range (řC)

Interquartile range (řC)

Exercise 2					
The owner of a house has a red key ring and a green one.					
There are three keys on the red one and five keys on the green one.					
There is only one key on each key ring that will open the door of the house.					
The owner of the house randomly picks one of the key rings and then randomly chooses one of					
the keys.					
1. Draw a tree diagram illustrating the experiment. (do not forget to write the probability for each branch)	3 marks				
2. Calculate the probability that the chosen key will open the door of the house.	2 marks				
3. Given that the key is not opening the door, find the probability that the owner chose the red key ring.	3 marks				

Calc. : 🗸

2 marks

