

The diagram shows the graph of the derivative f' of a function f.

Calc.: X

The diagram shows the graph of the derivative f' of a function f.

a) Give the intervals on which the function f is increasing.

b) Determine whether the function f has a local maximum. Justify your answer.

2 marks

3 marks

Exercise 3	Calc. : 🗡
Consider the function f defined by $f(x) = 3x^3 - 2x^2 - 1$.	
Consider also the function F defined by $F(x) = a \cdot x^4 + b \cdot x^3 + c \cdot x + d$, where a, b, c and d are four	
real numbers.	
a) Find the values of the three parameters $a, b,$ and c such that $F' = f$.	3 marks
b) Find the value of the parameter d such that $F(1) = \frac{1}{12}$.	2 marks

3 marks

Here is the curve of the function f defined by:

$$f(x) = x^2 - 2x + 2$$

- a) **Find** an approximation of the area under the curve from x=0 to x=4 by using left sided rectangles of width 1.
- b) Based on the graph, **discuss** if this approximation is an over-estimation of $\int_0^4 f(x) dx$, or an under-estimation. **Justify** your answer.

The graph below shows a periodic function f, defined by:

$$f(x) = a \cdot \sin(b(x - c)) + d$$

((where a, b, c and d are four real numbers).

Based on the information in the graph,

5 marks

Calc. : X

- **determine** the amplitude, the period and the vertical shift of f, then **give** the values of a, b and d.
- find $f(\pi)$ and $f(9\pi)$.

Exercise 6 Calc.: X

Let us consider the function f defined by:

$$f(x) = \frac{1}{x}$$

We recall that the function F defined by $F(x) = \ln(x)$ is a primitive of f.

Calculate the area under the curve of f from x=1 to x=e.

5 marks

Exercise 7 Calc.: X

Two brothers, Jarek and Kuba, wash the dishes after each dinner. Kuba is older and the probability that he washes the dishes after dinner is 4/7.

When Kuba washes the dishes, the probability of breaking a plate is 2/100. When Jarek washes the dishes, this probability is 1/100.

We select a dinner at random.

a) **Draw** a tree diagram of the situation described.

- 2 marks
- b) A plate is broken during the washing of the dishes after the selected dinner. **Calculate** the probability that Kuba washed the dishes.

3 marks

Exercise 8 Calc.: X

In a certain class, 60% of the students have a cat, 50% of the students have a dog. We also know that 30% of the students have both a dog and a cat. We select a student at random in this class and we consider the following two events:

Event A — the student has a dog,

Event B — the student has a cat.

a) Determine if the events A and B are independent. Justify the answer.

2 marks

b) Calculate $P(A \cup B)$.

3 marks

Exercise 9 Calc.: X
A player throws at a darthoard 4 times in a row. For each throw, the player hits the bull's eye.

A player throws at a dartboard 4 times in a row. For each throw, the player hits the bull's eye in the center of the dartboard with a probability of 1/4. The random variable X indicates how often the player hits the bull's eye.

a) **Explain** why the random variable X follows a binomial distribution and **give** its parameters.

2 marks

b) Calculate the probability that the player hits the bull's eye exactly three times.

3 marks

Exercise 10 Calc.: X

The data presented in the table below describes the growth of a cactus. This type of plant can grow to be maximum 5 meters tall.

x = Years after planted						5	6
y = Height (m)	0	0.6	1.3	1.7	2.2	2.5	2.9

a) Draw a scatterplot for this data. Use an appropriate scale.

 $2~{\rm marks}$

b) Knowing that the data describes the growth of a cactus that can maximum become 5 meters high, **discuss** what kind of regression model would describe the data best. **Justify**.

3 marks