Exercise 1	Calc. : 🗸
The high-speed train (TGV) going to Gare Centrale in Luxembourg City starts slowing down	
when it passes the train station of the town of Bettembourg. The train velocity, v , in m/s, is	
given by:	
v(t) = 84 - 0.3t	
\dots where t is the time in seconds after the train has passed the Bettembourg train station. For the following questions, you may use the formulae:	
• The distance d (in meters) covered by an object moving at a velocity $v(t)$ between time a and time b is given by: $d = \int_{a}^{b} v(t) dt$.	
• The acceleration a (in m/s ²) of an object moving at a velocity $v(t)$ is given by: $a = \frac{dv(t)}{dt}$. It can be positive or negative.	
• The thermal energy E (in J, Joules) generated between time a and time b by the TGV train	
moving at a velocity $v(t)$ is given by: $E = 220\ 000 \int_{a}^{b} v(t) dt$.	
a) Find the distance the train has covered in 100 seconds after it has gone through the Bettembourg train station.	2 marks
b) Calculate the acceleration of the train (here a deceleration).	2 marks
c) Justify with an appropriate calculation that the train stops 280 seconds after it has gone through the Bettembourg train station, keeping in mind that the train is considered to have stopped when its velocity is equal to zero.	3 marks
d) During deceleration, there is heat buildup in the brakes of the train due to friction. Calculate the thermal energy generated in the train brakes between the start of the deceleration process in Bettembourg and the point at which the train comes to a complete stop in Gare Centrale.	2 marks
The TGV generates noise. The government is investigating using trees and bushes to mitigate the effects of this noise. Through dense foliage, the train noise attenuation A measured in decibels	

The TGV generates noise. The government is investigating using trees and bushes to mitigate the effects of this noise. Through dense foliage, the train noise attenuation A, measured in decibels per meter, dB/m, is given by the following model:

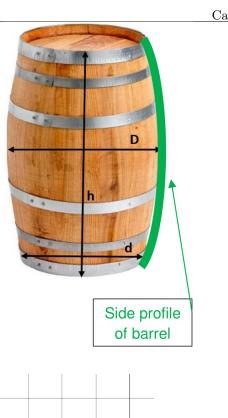
$A(x) = -0.058 + 0.0177 \cdot \ln(x)$

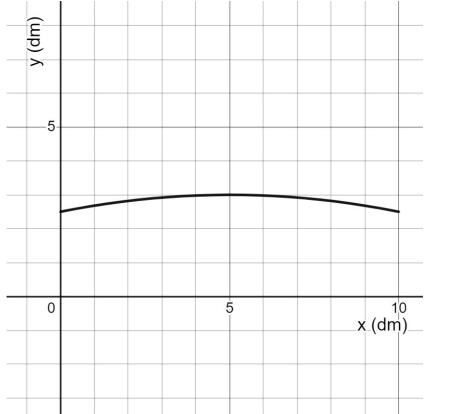
where x is the propagation distance of the noise, measured in meters from the train.	
e) Calculate the attenuation right past the bushes, 30 meters away from the train.	3 marks
f) Find the minimal distance away from the train that provides an attenuation of at least 0.04 dB/m.	3 marks
g) Discuss the limit of the attenuation value when the propagation distance approaches infinity.	2 marks
People reach the train station on time with a probability of 89% . On a winter's day, 210 people want to ride a train. Let X be the number of persons who reach their train on time. We assume that X follows a binomial distribution.	
h) Determine the probability that none of the persons reach their train with a delay.	2 marks
i) Find the probability that at least 200 of the persons reach their train on time.	2 marks
j) Find the probability that less than 90% of this group will reach their train on time.	2 marks
k) Calculate the expected value and the standard deviation of X .	2 marks

Exercise 2

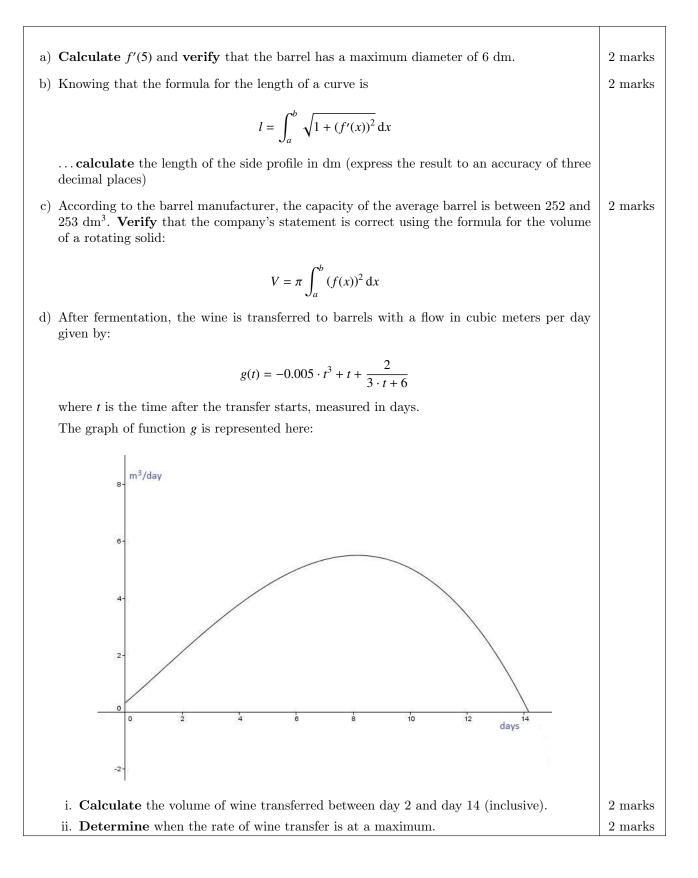
A Luxembourgish winery produces wines that are partially fermented in oak barrels.

On average, the barrel used has the dimensions shown in the figure opposite:


- \bullet Height: h=10 dm
- $\bullet\,$ Minimum diameter: d=5 dm
- Maximum diameter: D=6 dm


The side profile of the barrel can be modelled with a function

$$f(x) = -0.02x^2 + 0.2x + 2.5$$


... where the radius of the barrel f(x) is represented as a function of the height x (with $0 \le x \le 10$ and the measurements are expressed in decimeters).

The side profile is also shown in the following figure:

Calc. : 🗸

Part of the wir	e produ	uced is	used to	make	liquor	wine fo	n aging	Asth	e vears	nass t	he wine	
	-				-		~ ~		•			
evaporates. The following table shows the amount of wine left $w(t)$ in a barrel filled in the year 1990, with respect to time t (in years), with t starting from $t = 1990$.												
, 1		`	•									
t (year)	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	
Wine left	252	252	251	251	249	247	244	244	243	240	239	
(liters)												
Enter the data into your calculator.												
e) Interpreting the trend observed in the data for liquid remaining as a function of year, explain why the data appear to be correlated.									1 mark			
f) Assuming a linear model can be applied, determine the equation of the linear regression line. Give the coefficients of the equation with a precision of two decimal places.								2 marks				
g) Determine the linear regression coefficient with a precision of two decimal places. Interpret the result; is the correlation reliable?									1 mark			
h) For this question, we will take: $w(t) = -1.418t + 3\ 076$. Estimate how much wine will be left in a barrel after 20 years (your answer should be correct to the nearest liter).									2 marks			
The wine is finally sold in bottles. The promotional campaign for the product requires that the inside of the bottle cap contains a code that gives the buyer a chance to win a prize with a probability $p = 0.093$. In a shopping center, 100 bottles are simultaneously displayed.												
i) Justify the fact that one can use a binomial distribution with probability p to model this situation.										1 mark		
j) Calculate the mean value and variance of the binomial distribution.										2 marks		
k) Calculate the probability (with a precision of 4 decimal places) that there are at least 2 bottles out of 100 with a winning cap.										2 marks		
l) Calculate the probability (with a precision of 4 decimal places) that there are exactly 5 bottles out of 100 with a winning cap.											2 marks	
m) Calculate the probability (with a precision of 4 decimal places) that there are a maximum of 10 bottles out of 100 with a winning cap.										2 marks		