Exercise 1

Let f be the function defined on $(0, +\infty)$ by $f(x) = a + b \frac{\ln(x)}{2}$.	
The representative curve of the function f admits an asymptote horizontal with equation $y = 1$	
and a tangent at the point of abscissa 1 with equation $y = -x + 2$.	
Determine the values of a and b .	5 marks

Exercise 2

In a three-dimensional space, we consider:

- The line L_1 of parametric representation: $\begin{cases} x = 3 + \lambda \\ y = -3 4\lambda \\ z = -2 + 2\lambda \end{cases} \quad (\lambda \in \mathbb{R})$
- The point $A(2, 1, -4) \in L_1$
- The line L_2 of parametric representation: $\begin{cases} x=10-3\mu\\ y=-21+12\mu\\ z=11-6\mu \end{cases} \quad (\mu\in\mathbb{R})$

Show that L_1 and L_2 are parallel then determine the coordinates of point **B** of line L_2 such that the line (AB) is perpendicular to L_1 and L_2 .

Exercise 3

Solve in \mathbb{R} the equation $16^{x^2} = 2^{4x-1}$.

Exercise 4

Calculate the integral:

$$\int_{-1}^{1} \frac{3}{2} \left(e^{3x} + e^{-3x} \right) dx.$$

Exercise 5	Calc. : 🗡
A metal chain hangs between two walls.	
Its height above the ground level can be described by the equation:	
$h(x) = e^{-x} + e^{x-1} + 2,$	
where x is the distance in meters along the ground from the left wall.	
Calculate how many meters from the left wall this chain is closest to the ground.	5 marks

Exercise 6	Calc. : 🗡
In the complex plane, show that the set of points M with affix z checking equality:	5 marks
z - 1 - 3i = z + 2 - 3i	
is a straight line for which we give an equation.	

Calc. : 🗡

Calc. : \boldsymbol{X}

Calc. : 🗡

5 marks

5 marks

Calc. : X

Exercise 7	Calc. : 🗡
An electronic device makes it possible to obtain randomly in whole natural x included, in the	
broad sense, between 1 and 999 (we are therefore in a situation of equiprobability). Any number	
between 10 and 99 is written with two digits and any number between 1 and 9 is written with	
a single digit ; thus the number sixty-two will be displayed 62 and not 062, likewise the number seven will be written 7 and not 007.	
1. Show that the probability of getting a multiple of 5 is $\frac{199}{1000000000000000000000000000000000$	3 marks
9999.	0 marks
2. Calculate the probability that the same number appears at least twice times in writing x .	3 marks
3. In this question we will round the probability of obtaining a multiple from 5 to 0.2.	
5 numbers are successively determined using this device.	
Calculate the probability that, among these five numbers, three exactly be multiples of five.	3 marks
4. We model the choice of a real number x in the interval [1;999] by a random variable following	
the density law defined by the function $f(x) = \frac{1}{998}$.	
(a) What is the probability of rolling a multiple of 5?	1 mark
(b) What is the probability of getting a real less than or equal to 500?	$3 \mathrm{marks}$
Exercise 8	Calc. : 🗡

Let <i>a</i> be a non-negative real number.	
We consider the equation	
$(E):\ln(x)=ax^2.$	
Study the number of solutions of this equation according to the value of a .	$7 \mathrm{\ marks}$