
On se place dans un repère orthonormé $(O; \overrightarrow{i}; \overrightarrow{j})$ du plan.

16 marks

On donne les points O(0;0), A(-1;3), B(5;-2), C(8;6) et M(x,y) tel que $\overrightarrow{AM} = \overrightarrow{u}$ ă; où \overrightarrow{u} a pour coordonnées (-9;-10).

- 1. Calculer les coordonnées de M.
- 2. Calculer les coordonnées des vecteurs \overrightarrow{AC} et \overrightarrow{BM} .
- 3. Les droites (AC) et (BM) sont-elles parallèlesă? Justifier.
- 4. Les points O, M et C sont-ils alignésă? Justifier.
- 5. Placer dans le repère ci-dessous les points O, A, B, C et M et vérifier les résultats des questions 1), 2), 3), et 4).

Exercise 2 Calc. : ✓

On se place dans un repère orthonormé $(0; \overrightarrow{i}; \overrightarrow{j})$ du plan.

On donne $D(3;-1) ; \, E(1;3) ; \, F(0;-2)$ et G(6;1).

Montrer que les vecteurs \overrightarrow{DE} et \overrightarrow{FG} sont orthogonaux.

 $4~\mathrm{marks}$

Exercise 3 On donne les fonctions f(x) = 0, 1x + 28, 4 et g(x) = 2, 4x - 12, 5.

Résoudre l'inéquation $f(x) \ge g(x)$. On pourra arrondir les résultats à 0,1 près.

Calc. : ✓

 $5~\mathrm{marks}$

Exercise 4 Calc. :

Calc. :

La distance de freinage d'un véhicule jusqu'à l'arrêt total est donnée par la formuleă:


7 marks

$$D = \frac{4V^2}{1000K} \quad \text{où} \quad \left\{ \begin{array}{l} D \text{ est la distance de freinage en m} \\ V \text{ est la vitesse du véhicule en km/h} \\ K \text{ est le coefficient d'adhérence de la route} \end{array} \right.$$

- 1. Exprimer le coefficient d'adhérence K en fonction de D et V.
- 2. Exprimer la vitesse du véhicule V en fonction de K et D.
- 3. Peut-on dire qu'il y a proportionnalité entre la distance de freinage et la vitesse ? Justifier.

On donne ci-dessous la courbe d'une fonction f définie sur [0; 200].

15 marks

- 1. Résoudre graphiquement l'équation f(x) = 1420.
- 2. Tracer dans ce repère la fonction g définie par g(x)=1200+x.
- 3. Résoudre graphiquement l'inéquation g(x) > f(x).

La fonction f a en fait pour expression :

$$f(x) = -0.05x^2 + 10x + 1000$$

- 4. Vérifiez à la calculatrice votre réponse à la question 1) en expliquant votre démarche.
- 5. Calculer l'image exacte de 30 par f.

Exercise 6 Calc.: \checkmark

1. Dans une entreprise, des caisses doivent être transportées. Un jour, les masses des caisses (en kg) étaient les suivantes :

5 marks

Lors de cette première journée, calculer la moyenne et l'écart-type des masses des caisses.

2. Lors d'une seconde journée, la moyenne des masses des caisses (en kg) était de 4 avec un écart-type de 1,5. On décide de rajouter un article de 0,5 kg dans chaque caisse. Donner la moyenne et l'écart-type de la série des masses des caisses, lors de cette deuxième journée, après le rajout de cet article.

 $3~{\rm marks}$

Exercise 7

Calc. : ✓ 11 marks

 $4~\mathrm{marks}$

La répartition des salaires dans une entreprise est la suivante :

Salaires (en)	1 450	1 500	1 900	5 125
Effectifs	12	13	23	2

- 1. Quel est l'effectif total de la série ?
- 2. Déterminer la médiane, les quartiles Q1 et Q3, ainsi que l'écart interquartile de cette série.
- 3. Dessiner la boîte à moustaches de cette série.
- $4.\$ Proposer une modification du salaire d'une personne de l'entreprise qui change les résultats de la question 2.

Exercise 8 Calc.: \checkmark

On considère, pour x en radians, les deux équations suivantes. Résoudre chacune des équations dans $[0; 2\pi[$.

 $1. \cos(x) = \frac{\sqrt{2}}{2}$

 $2. \sin(x) = -1$