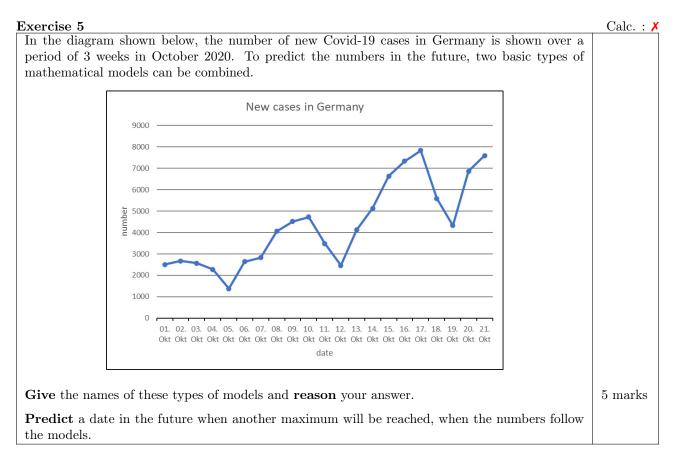
Exercise 1 $(1 + 1)^{1/2}$	Calc. : X
A little hill on a playground can be modelled by a function f with $f(x) = -\frac{1}{3}x^3 + x^2$, for $x > 0$ where x is the distance in m and $f(x)$ is the height in m. The picture shows the graph of this	
function f .	
f(x)	
f	
x	
Determine the height of this hill.	5 marks
	<u> </u>
Exercise 2	Calc. : 🗡

After some complaints about the lunch in the canteen, the manager claims that at most only 20% of all 2,500 pupils are not satisfied with the lunch. The pupils committee thinks that it is more than 20% of the pupils. So, they ask a group of 40 randomly chosen pupils for their opinion.										
1. Explain , whether a left or a right sided test should be used to verify this hypothesis. Reason your answer.							2 marks			
2. State which null hypothesis H_0 could be used for a NHST test and give the alternative hypothesis H_1 .							1 mark			
3. Determine the critical value k with the help of the following table if the significance level is set at 5% and interpret this value.							2 marks			
k	8	9	10	11	12	13	14	15		
$P(X \ge k)$	0.563	0.407	0.268	0.161	0.088	0.043	0.019	0.008		

	κ	0	9	10	11	12	19	14	10		
	$P(X \ge k)$	-0.563	0.407	-0.268	0.161	0.088	0.043	0.019	0.008		
						1				1	~ .
Exercise 3											Calc. : \varkappa
A small su	ıpermarket	chain er	nploys 9	00 peop	ole, 10 o	f them v	vork in	the man	agement	t, but only	
one of the	managers i	s female	. The ot	her 809	women	work in	the shop	os.			
Show, that	at it depend	ls on the	sex, if	you get a	a positic	on in the	manage	ement of	this cor	npany.	5 marks

Exercise 4	Calc. : 🗡
A couple needs a negative Covid test to visit friends abroad. It is known that 20% of the tests show	
a negative result, although the person could be infected (false negative result). The probability	
of a false positive result is close to zero. It can be assumed that if one of them is infected, that	
the other one is also infected.	
Explain , why this situation is a Bernoulli process and show , that the probability of a false	5 marks
negative result drops down to 4% when both get tested.	



Exercise 6	Calc. : 🗡
The number of bacteria in a petri dish is investigated in a laboratory. It turns out, that under	
certain conditions, the growth can be modelled by the function	
$N(t) = 10\ 000 \cdot e^{\ln(1.03) \cdot t},$	
where $N(t)$ is the number of bacteria after t days.	
1. Give the number of bacteria at the beginning and the growth rate [per day] in percent.	2 marks
2. Calculate the number of bacteria after the first day.	2 marks
3. Explain, why this model cannot be used on a very large time scale.	1 mark

Exercise 7	Calc. : 🗡
Indicate if the statement is true or false and reason your answer. Note that the points are only	
given if answer and reason are correct.	
1. If the temperature $T(x)$ is constantly increasing, then $T'(x) > 0$.	1 mark
2. All periodic models can be modelled by a sine function.	1 mark
3. There are 9 different possibilities for 3 pupils to stand next to each other.	1 mark
4. When some die [well balanced with 6 faces numbered from 1 to 6] is rolled once, the expected value is 3.5.	1 mark
5. If 10 people are chosen out of a very large group, the number of [chosen] females can be modelled by a binomial distribution, although a person cannot be chosen more than once.	1 mark

Exercise 8	Calc. : 🗡
The daylength $L(t)$ in hours on a certain location was recorded over one year. It can be modelled	
by the function	
$L(t) = 4 \cdot \sin\left(\frac{2\pi}{365}t\right) + 12,$	
where t is the time in days.	
Interpret the outcome of $\int_0^{365} L(t) dt$ and explain , why the result is equal to $12 \cdot 365 = 4$ 380.	5 marks
xercise 9	Calc. : 👌
1. Interpret what is meant by expected value of a random variable.	2 marks
2. X is a random variable following a normal distribution with expected value μ and standard deviation σ .	1 mark
Give a probability taking into account these two characteristic values μ and σ .	
ah	

3. A continuous ra	and om variable Y defined over $\mathbb R$ is such that $P(a \leq Y \leq b) = \int_a^b f(z)\mathrm{d} z.$	2 marks
	$C^{+\infty}$	
Explain why	$f(z)\mathrm{d} z=1.$	
	$J_{-\infty}$	

Exercise	10

Exercise 10	Calc. : 🗡
A new machine recognises doping in blood. Let there be the following two events:	
• P: The test is positive	
• D: The sportsman was doped	
• D. The sportsman was doped	
After some test runs it was found out, that out of 100 blood samples with doping, the machine recognises it in 90 cases. However, it also gives a false alarm in 5% of the cases, when the sample was clean. It can be assumed, that every 10^{th} sportsman at a certain event is doped.	
We want to find out the probability that a sportsman was indeed doped when the test is positive.	5 marks
1. Present all necessary information in the correct mathematical notation.	
2. Use an appropriate method to determine the probability for a sportsman to be doped when the machine gives an alarm.	