Exercise 1	Calc. : 🗡
Une suite arithmétique strictement croissante (a_n) et une suite géométrique (b_n) ont le mê	me
premier terme $a_1 = b_1 = 2$.	
De plus, les deux suites (a_n) et (b_n) ont le même troisième terme $a_3 = b_3$.	
La somme des trois premiers termes de la suite arithmétique est supérieure de 4 à la somme de	des
trois premiers termes de la suite géométrique.	
Trouver l'expression du <i>n</i> -ième terme de chacune des suites (a_n) et de (b_n) .	7 marks

Exercise 2	Calc. : 🗡
The Corbett Nation Park reserve in India is a natural reserve where we can see tigers.	
1. This reserve is home to 8 tigers, five of which are marked.	
We capture three tigers, what is the probability that two of them be marked?	2 marks
Give the result as an irreducible fraction.	
2. A group of 8 tourists arrives on the site for a safari.	
Four of these tourists must get into the first car, that has four different places. How many different ways can they fit in the car?	2 marks
3. We know that 40% of visitors to Corbett Nation Park are European.	
Among Europeans, 10% see a tiger.	
We also know that 20% of visitors to this reserve see a tiger.	
We come across a non-European visitor at random. Calculate the probability that he saw a tiger.	2 marks
4. Every day, the probability that a tourist sees a tiger is of 0.2.	
(a) Calculate the probability that a tourist sees a tiger for the first time on the third day of his visit.	2 marks
(b) We note $P(X = n) = p_n$ the probability that a tourist sees a tiger for the first time on the <i>n</i> -th day of his visit. Show that the sequence (p) is a geometric sequence of which we will specify the first term and reason.	2 marks
(c) Show that $P(X \le n) = 1 - 0, 8^n$. Interpret this result in this context.	3 marks