Exercise 1	Calc. : 🗸
Gabriella is playing with her remote-controlled toy car. The following equation describes the path	
of the car:	
$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 16 \\ 1 \end{pmatrix} + t \begin{pmatrix} -12 \\ 5 \end{pmatrix}$	
The distance units are metres, and the time is in minutes.	
1. Write down the initial position of the car.	1 mark
2. Calculate the position of the car after 15 seconds.	1 mark
3. Compute the speed of the car.	1 mark
Grandma is watching Gabriela from point $P(-1, -6)$	
4. Find the shortest distance from point P to the path of the car.	3 marks
The edge of the cliff is at the point $\left(0, \frac{23}{3}\right)$ and Grandma walks in that direction with velocity	
vector $\begin{pmatrix} 3\\41 \end{pmatrix}$.	
5. After how many minutes will the car reach the edge of the cliff?	2 marks
6. Will Grandma be able to catch the car before it falls down the cliff if she starts moving at the same time as the car? Explain your answer.	4 marks

Exercise 2	Calc. : 🗸
 A contractor must carry out work for a public body. If they do not complete the work on time, they will have to pay a daily penalty: 100 on the first day, 110 on the second day, and so on with a daily increase of 10 a day. Let u be the penalty on the u th day. Thus, the first term in secuence u is u = 100. 	
Let u_n be the penalty on the <i>n</i> -th day. Thus, the first term in sequence u is $u_1 = 100$.	
(a) State the nature and characteristics of sequence u .	1 mark
(b) Explain why $u_n = 90 + 10n$ for all values of integer n .	1.5 marks
(c) On what day would the daily penalty amount to 220 ?	1 mark
(d) What total amount of penalty would the contractor have paid after 20 days of delay?	2.5 marks
2. On another construction site, the penalty for delay is 80 on the first day and then increases by 10% each day. Let v_n be the amount of the penalty on day n in this case.	
(a) Compute the values of the first three terms v_1 , v_2 and v_3 .	1.5 marks
(b) Explain why $v_n = 80 \cdot 1.10^{n-1}$ for all values of integer <i>n</i> .	1.5 marks
(c) What is the total amount of penalty the contractor would have paid after 20 days of delay?	2 marks
3. From which day onwards does the amount of the daily penalty in this case exceed that of the first case?	3 marks

```
Calc. : 🗸
```


Exercise 4												Calc. : 🗸
A company is c staff. The expe	onducting rience and	; a stud; l salarie	y into t es of 12	he rela [.] emplo	tionship yees we	o betwe re tabu	en the lated.	experie	nce and	d salary	of their	
Experience () 2	4	6	8	10	12	14	16	18	20	22	
$\begin{array}{c c} x \text{ (years)} \\ \hline \\ Salary y 4 \ 2 \\ () \end{array}$	200 4 800	4 600	5 000	5 200	5 600	5 650	5 660	5 500	6 000	5 831	6 200	
1 One of the	following	correla	tion co	efficien	ts fits t	hese da	ta W	hich is	it?			1 mark
1. One of the	10110 11115	0011014		011101011	05 1105 0	nese ac						1 1110111
			$r_1 = 0.9$	$5, r_2$	= -0.93	5 or	$r_3 = 1$	1?				
Explain wi	thout refe	erring to	o any co	omputa	ations.							
2. Compute t	he coordi	nates of	the av	erage p	point fo	r these	data, t	to the n	learest	integer	•	2 marks
3. The equation	ion of regr	ession l	ine wit	h the r	nethod	of the	least so	luares i	s $y = a$	+ <i>bx</i> , v	where	2 marks
			$\sum_{n=1}^{n}$	-> (_`							
		h -	$-\sum_{i=1}^{\infty} (x_i)$	(y - x)	(i - y)	and	$a = \overline{v}$	$-b\overline{r}$				
		<i>D</i> -	$\sum_{n=1}^{n}$	$(x_i - \overline{x})$	$(2)^{2}$	and	<i>u</i> – <i>y</i>	υ				
			$\frac{1}{i=1}$									
Use the inf to 2 decim	formation al places.	given b	elow to	comp	ite the	values	of coeff	icients	a and b	b. Give	answers	
00 - 4001111	ar praces.											
		2 x _i	$x_i - \bar{x}$ -11 -9	$(x_i - \bar{x})^2$ 121 81								
		4	-7 -5	49 25								
		8 10	-3 -1	9 1								
		12 14	1	1 9 25								
		18	7	49 81	n							
		22	11	121	$\sum_{i=1}^{n} (.$	$(x_i - \overline{x})$	$(y_i - \overline{y}) =$	= 45 00	9			
4. Use the lin of experien	ear model ace.	f(x) =	78.7 <i>x</i> +	4 488 t	to estim	nate the	e salary	of an e	employe	e with	40 years	2 marks
The salaries of standard deviat	the emploition $\sigma = 5$	yees of 53.	this con	mpany	are noi	mally o	listribu	ited wit	th mea	$\mu = 5$	353 and	
5. Mr. Smith, an employee of this company, is paid 6 459 . What proportion of the employees of this Company are paid less that Mr. Smith?									1.5 marks			
6. Compute the probability that an employee's salary is greater than 7 636 and comment your answer for question 5 .									1.5 marks			
In another com	In another company, the salaries are normally distributed with standard deviation $s = 620$.									520.		
7. Knowing th 0.107, find	hat the protocol the mean	obabilit salary i	y that a n that o	an empl compar	loyee's s ny. Writ	salary is te your	s greate answer	r than to the	5 000 is nearest	s appro whole	ximately number.	3 marks