

Exercise 4 Let f and g be functions that are defined as fol- C_{f} lows: $f(x) = x^2 - 2x + 2$ and g(x) = x + 2and shown in the graph on the right. 3 a) **Explain** what $\int_0^3 |f(x) - g(x)| dx$ represents graphically (you can reproduce the graph on your answer sheet and show your answer on the graph). b) Calculate $\int_0^3 |f(x) - g(x)| \, \mathrm{d}x.$

Calc. : X

Exercise 5		Calc. : 🗡
The value of an electric vehicle newly purchased can be modeled by the function:		5 marks
$V(t) = 40~000 \times \mathrm{e}^{\mathrm{ln}(0.80)t}$ where $V(t)$ is the value of the vehicle (in euros), t years after purchase.		
a) Identify the formula equivalent to the formula $V(t)$ among the following 4 proposals V_1 , V_2 , V_3 and V_4 :		
$V_1(t) = 40\ 000 \times \ln(0.80)t$	$V_2(t) = 40\ 000 \times 0.80t$	
$V_3(t) = 0.80 \times \ln(40\ 000)t$	$V_4(t) = 0.80 \times 40\ 000t$	
b) Determine the initial purchase price of the vehicle (new).c) Calculate the value of the vehicle one year after purchase		
c) Calculate the value of the vehicle one year after purch	nase.	

Exercise 7

1

Exercise 7	Calc. : 🗡
A waiter, working in a pizzeria, notices that, on average, 40% of the customers are families, the	5 marks
rest are couples.	
He also notices that:	
• Out of 100 families, 70 leave a tip;	
• 4 out of 10 couples leave a tip.	
We are interested in the following events:	
• F: "the table is occupied by a family";	
• C: "the table is occupied by a couple";	
• T: "The waiter gets a tip."	
a) Present all the information of the statement in a probability tree or a two-way table.	
b) Determine the probability that the table was occupied by a family knowing that the waiter received a tip.	

Exercise 8	Calc. : 🗡
Out of 1500 students at a university, 1200 watch a series during the week, out of which 150 also	
go to the cinema on weekends.	
There are 200 students going to the cinema on weekends, without having watched a series during	
the week.	
Determine if going to the movies on the weekend is dependent on watching a series on weekdays.	5 marks

Exercise 9				Calc. : 🗡			
An urn contains 2 red balls and 3 white balls. We	draw 3 balls at r	andom.		5 marks			
a) Please indicate under what condition(s) this situation could be considered as a binomial distribution.							
b) Assuming the condition(s) of a) is/are verified red balls at the end of the 3 draws.	d, calculate the	probabilit	y of obtaining only				
Exercise 10				Calc. : 🗡			
Let X be a random variable.							
The table below shows the probability distribution of X :							
x_i 10 20	30 40	50					

0.2

3*a*

0.35

5 marks

0.01

а

 p_i **Calculate** the expected value of the variable X.