Exercise 1	Calc. : ✓
Ecrire l'expression suivante à l'aide d'un seul logarithme :	3 marks
$A = 2\log 3 - \log 6 + \log 2$	
Exercise 2	Calc. : 🗸
Résoudre l'équation suivante : $\log(x+2) - \log 2 = \log 5$	3 marks
$\log(x+2) - \log 2 - \log 3$	
Exercise 3	Calc. : X
1. Evaluate $2 \cdot \log_4(3) + \log_4(4) - \log_4(36)$	3 marks
2. Solve $\log(2x) - \log(6 - x) = 0$	3 marks
Exercise 4	Calc. : 🗡
Résoudre l'équation suivante :	5 marks
$\log_2(x) + \log_2(x - 2) = 3$	
Exercise 5	Calc. : X
	1 1
1. Donne la valeur de x sachant que $3^x = 6$.	1 mark
(a) $x = \log_3 6$ (b) $x = \log_6 3$ (c) Ne peut pas être déterminée	
2. Calcule la valeur exacte des expressions suivantes :	
(a) $25^{\log_5 2}$	2 marks
(b) $\log_8 16 - \log_8 2$	3 marks
Exercise 6	Calc. : ✓
Résous les équations suivantes pour tout $x \in \mathbb{R}$. Donne les détails de tes calculs et écris les solutions sous forme exacte.	
$1. \log_3(3x - 1) = 2$	4 marks
2. $\log(x-2) + \log(x+1) = 1$	5 marks
Exercise 7	Calc. :)
1. Si $a = \log 8 + \log 5 - 2\log \sqrt{4}$, $b = 3^{\frac{1}{2}\log_3(2)}$ et $c = \log_3(27)$, justifier que $a < b < c$. Détailler clairement le raisonnement.	3 marks
2. Résoudre les équations suivantes pour $x \in \mathbb{R}$:	3 marks
(a) $(3^{x-1})^2 = 3^{x-5}$; (b) $4^{x-2} = 8^x$.	
Exercise 8	Calc. : ✓
1. Résoudre l'équation $\log_5 x + \log_5 3 = \log_5 6$.	1.5 marks
2. Résoudre l'équation $\log_2 x + \log_2 (x - 1) = 2 \log_2 x$.	2.5 marks
Exercise 9	Calc. : 🗡
Résoudre l'équation : $\log_2(x) + \log_2(4) = 6$.	5 marks

Exercise 10	$\underline{\text{Calc.}: \checkmark}$
Soit l'équation suivante : $\log(x-2) + \log(x+3) = 2$.	
1. Résoudre cette équation en indiquant les étapes et donner la ou les solution(s) en valeur exacte.	5 marks
2. Donner la ou les solution(s) de cette équation en valeur approchée(s) à 10^{-1} près.	1 mark

Exercise 11		Calc.: X
Bestimmen Sie die Lösungen der folgenden	Gleichungen	8 marks
a) $9^x - 4^x = \left(\frac{1}{2}\right)^{1-2x}$	b) $25^{\log_5 2} = x$	

Exercise 12		Calc.: 🗶
Stellen Sie folgende Terme durch einen einziger	n Logarithmus dar und vereinfachen Sie so weit	8 marks
wie möglich!		
a) $2\lg(x) + 3\lg(y) =$	b) $\log(x^3 - xy^2) - 2\log(x + y) =$	

Exercise 13	Calc. : 🗸
Geben Sie für die nachfolgende Gleichung eine Definitionsmenge an und finden Sie die Lösungs-	4 marks
menge, wenn gilt: $\mathbb{G} = \mathbb{R}$	
$\log(4x+5) = \log(3x)$	