Exercise 1
Une variable aléatoire continue X a une fonction de densité f donnée par :

$$
f(x)= \begin{cases}0 & \text { si } x<0 \\ a \cdot \mathrm{e}^{-a x} & \text { si } x \geq 0\end{cases}
$$

On sait que : $P(X<1)=\frac{1}{2}$.
5 marks
Montrer que $a=\ln 2$.

Exercise 2

Calc. : X
An electronic device makes it possible to obtain randomly in whole natural x included, in the broad sense, between 1 and 999 (we are therefore in a situation of equiprobability). Any number between 10 and 99 is written with two digits and any number between 1 and 9 is written with a single digit ; thus the number sixty-two will be displayed 62 and not 062 , likewise the number seven will be written 7 and not 007 .

3 marks

1. Show that the probability of getting a multiple of 5 is $\frac{199}{999}$.

3 marks

3 marks

1 mark
3 marks
2. Calculate the probability that the same number appears at least twice times in writing x.
3. In this question we will round the probability of obtaining a multiple from 5 to 0.2 .

5 numbers are successively determined using this device.
Calculate the probability that, among these five numbers, three exactly be multiples of five.
4. We model the choice of a real number x in the interval $[1 ; 999]$ by a random variable following the density law defined by the function $f(x)=\frac{1}{998}$.
(a) What is the probability of rolling a multiple of 5 ?
(b) What is the probability of getting a real less than or equal to 500 ?

