



For each of the following statements **justify** whether it is true or false. 5 marks

- a) The function f is decreasing for $-1 \leq x \leq 1.$
- b) The function f has a minimum at x = -2.
- c) There is a horizontal tangent to the graph of f at the point where x=1.
- d) The slope of the tangent to the graph of f at the point where it intersects the y-axis is equal to 2.
- e) The graph of f has three horizontal tangents for $-2.1 \le x \le 2$.

Exercise 3	Calc. : 🗡
Consider the functions f and F defined by	
$f(x) = 4x^3 + 3x^2$ and $F(x) = x^4 + x^3 + 5$.	
a) Show that F is a primitive function of f .	2 marks
b) Calculate $\int_{-1}^{2} f(x) dx$.	3 marks
Exercise 4	Calc. : 🗡
The figure below shows the graph of a function f and two regions S_1 et S_2 bounded by the graph	1
of f and the x -axis.	
The graph is symmetric with respect to the origin of the coordinate system.	
The graph is symmetric with respect to the origin of the coordinate system.	
Y .	
f S_1 A S_2 f S_2 f	
You are given that $\int_{-4}^{0} f(x) dx = 7.$	
a) Interpret the integral $\int_{-4}^{0} f(x) dx$ graphically.	2 marks

b) **Determine**

1.
$$\int_{0}^{4} f(x) dx$$
.
2. $\int_{-4}^{4} f(x) dx$.

3. the area of the region $S_2.$

$\begin{array}{c|c} \mathbf{Ex} \\ \hline \mathbf{A} \\ \mathbf{fu} \end{array}$ vise 5

Exercise 5 A swimming pool is being emptied and the volume of water that remains can be modelled by the function V given by	Calc. : X
$V(t) = 5 \ 000 \cdot 0.60^t, \qquad t \ge 0,$	
where time t is measured in hours and $V(t)$, measured in litres, is the volume of water, remaining at a time t. Emptying the pool starts at the time $t = 0$.	
a) Determine the volume of water in the pool at the start and after 1 hour.	2 marks
b) Calculate the percentage rate at which the volume of water decreases per hour.	2 marks
c) Explain what the model tells us about the volume of water remaining after a very long time.	1 mark

Calc. : X

3 marks

Exercise 6	Calc. : 🗡
a) Calculate in how many ways the letters of the word PARIS can be ordered.	2 marks
b) Calculate how many "words" (not necessarily having a meaning) of 3 different letters you can write using letters of the word PARIS.	3 marks

Exercise 7 Calc. : X A survey of 100 students enrolling at a university, shows that 45 speak English • 45 speak English 40 speak French • 35 speak German 35 speak German • 20 speak both English and French 23 speak both English and German • 19 speak both French and German 12 speak all three languages. Using a Venn diagram or otherwise, determine the probability that a randomly selected student 5 marks

Exercise 8	Calc. : 🗡
Applicants for jobs in a large company must sit an aptitude test. They are either	
• accepted with a probability of $\frac{1}{5}$ or	
• rejected with a probability of $\frac{1}{2}$ or	
• retested with a probability of $\frac{3}{10}$.	
When they are retested, there are just two outcomes, accepted with a probability of $\frac{2}{5}$ or rejected with a probability of $\frac{3}{5}$.	
a) Draw a tree diagram to illustrate the outcomes.	2 marks
b) Determine the probability that a randomly selected applicant is accepted.	3 marks

Exercise 9	Calc. : 🗡
A biased coin is thrown several times.	
At each throw, the probability of getting a head is $\frac{1}{3}$.	
a) Is this a Bernoulli process? Justify your answer.	2 marks
b) The coin is thrown 3 times.	
Calculate the probability of getting exactly 2 heads.	2 marks
c) The coin is thrown 60 times.	
Calculate the expected value for the number of heads.	1 mark

Exercise 10	Calc. : 🗡
A machine produces steel balls.	
The diameter of the balls is normally distributed with mean $\mu = 18.0$ mm and standard deviation	
$\sigma = 0.5 \text{ mm.}$	
A ball is selected at random.	
a) Determine the probability that its diameter is between 17.0 mm and 19.0 mm.	1 mark
b) Determine he probability that its diameter is between 17.0 mm and 18.5 mm.	2 marks
c) A batch of 400 steel balls is selected at random from this production and the diameter of each ball is measured.	
If the diameter of a ball is less than 17.0 mm , t will be rejected.	
Estimate how many balls will be rejected.	2 marks