Exercise 1	Calc. : 🗡
Consider the function f defined by	
$f(x) = 2x^3 - 9x^2 + 45.$	
Determine the coordinates of the extrema of the function f and specify their nature.	5 marks
Exercise 2	Calc. : 🗡
The diagram below shows the graph of a function g .	
g y y z	
Specify for each of the following expressions, whether it represents the hatched area. Justify your answer.	5 marks
a) $\int_{a}^{c} g(x) \mathrm{d}x$	
b) $\int_{a}^{b} g(x) dx + \int_{b}^{c} g(x) dx$	
c) $\left \int_{a}^{c} g(x) \mathrm{d}x \right $	
$d) - \int_{a}^{b} g(x) dx + \int_{b}^{c} g(x) dx$	

Exercise 3	Calc. : 🗡		
A car is travelling along a horizontal road and the distance from the origin is observed over a			
period of 8 seconds, starting at $t = 4$ seconds.			
The distance is given by the function d defined by			
$d(t) = \frac{1}{4}t^3 - 2t^2 + 5t + 3 \qquad \text{with } t \in [4, 12],$			
where t is the time expressed in seconds, and $d(t)$ is expressed in metres.			
a) Show that at the start of the observation, the car is 7 metres from the origin.	$1 \mathrm{mark}$		
b) Determine the average velocity of the car between 4 seconds and 10 seconds.	2 marks		
c) Determine the instantaneous velocity of the car at $t = 10$ seconds.	2 marks		

area of the lake decreases by 10% each year. The initial surface area of the lake is 5 km ² .			
a) Explain why the surface area of the lake can be modelled by a function <i>s</i> defined by $s(t) = 5 \cdot 0.9^t$, where <i>t</i> is the number of years since year 2000 and $s(t)$ is expressed in km ² .	2 marks		
b) Using this model, determine the surface area of the lake in 2002.	1 mark		
c) Assume the model will remain valid over time.			
Describe the evolution of the surface area of the lake over time.	2 marks		

Describe the evolution	of the surface area of the	lake over time.
2 05 01 15 0 010 0 0 01 0 10 10 10	or the surface area or the	iane ever time.

Exercise 6	Calc. : 🗡
Peter applies for his first job. He sends his CV letter to 2 different companies.	
The probability that exactly one company will reply to him is 0.45.	
The probability that no company will reply to him is 0.3.	
a) Draw a Venn diagram to illustrate the above information.	2 marks
b) Determine the probability that both companies will reply to Peter. Give the answer as a percentage.	3 marks

Exercise 7	Calc. : 🗡		
The distribution of peppers at a grower's market stand is as follows:			
$\frac{2}{5}$ of peppers are green, of which half are organic.			
$\frac{9}{20}$ of peppers are red, of which 40% are organic.			
$\frac{3}{20}$ of peppers are yellow, of which 80% are organic.			
Å pepper is chosen at random.			
Determine the probability that this pepper is organic.			

Exercise 8	Calc. : 🗡
In a football team composed of 18 players, 3 are goalkeepers, 5 are defenders, 6 are midfielders	
and 4 are forwards.	
a) The trainer chooses 3 of those defenders to play the next match.	
Calculate how many different groups of three defenders the trainer can choose.	$1 \mathrm{mark}$
b) The three defenders have been chosen. Now, one of them is assigned the left part of the field, one of them is assigned the central part, and one of them is assigned the right part.	
Calculate in how many different ways those 3 defenders can position themselves on the field.	$1 \mathrm{mark}$
c) 11 players are to be selected to play the game: this team will consist of 1 goalkeeper, 3 de- fenders, 5 midfielders and 2 forwards.	
The 3 defenders have been chosen.	
Determine how many different groups of 8 players the trainer can choose to fill the remaining places.	3 marks

ACI CISC	10								
In a population of fish, approximatively 42% are female. A test is conducted because it is possible									
that, in f	act, this pro	oportion is le	ess.						
,	/ I	-							
a) Stat	e the null b	h where h and h are the set of h and h are the set of h and h are the set of h and h are the set of h and h are the set of h and h are the set of h are the set of h and h are the set of h are the set of h and h are the set of h are the set of h are the set of h and h are the set of h are the set of h are the set of h and h are the set of h and h are the set of h and h are the set of h are the set of h and h are the set of h and h are the set of h are the set of h and h are the set of h and h are the set of h are the set of h are the set of h are th are the set of h are the set of h are th are the set of	I_0 and the a	lternative hy	vpothesis H_1				2 marks
)	a) State the half hypothesis high and the attendance hypothesis high								
b) Let	b) Let X be the random variable that gives the number of female fish in a sample of 20 fish.						fish.		
The	The table below shows values of $P(X \le k)$ for $k = 3$ A 5 6 7 8 for a probability of 42% that								
a given being formula									
a given fish is a female.									
	k	3	4	5	6	7	8		
	$P(X \ge k)$	0.0102	0.0349	0.0922	0.1959	0.3461	0.5229		1
Determine the critical value k if the significance level is set at 5%, and interpret this value.					alue.	3 marks			