Exercise 1	Calc. : 🗸
Consider the function $f(x) = x^3 - 4x^2 + x + 2$.	
1. Determine the coordinates of the turning points of $f(x)$, giving your answer to 2 decimal places.	4 marks
2. Draw a table of signs.	2 marks
3. Use the table of signs to determine the nature of the turning points.	2 marks
Exercise 2 $6x + 5$	Calc. : 🗸

Consider the function $f(x) = \frac{3x+3}{3x-4}$.	
1. Explain why the function is undefined when $x = 1\frac{1}{3}$.	1 mark
2. State the domain of the function.	2 marks
3. Give the coordinates of the y-intercept of $f(x)$.	2 marks

Exercise 3 Karen plays volleyball and throws a ball vertically. The height $h(t)$ (in meters) as a function of the time t (in second) of the ball is given by the formula: $h(t) = 6t - 5t^2 + 2$.	Calc. : 🗸	
1. From what height does Karen throw the ball?	2 marks	
2. Show that the ball reaches its highest point at $t = 0.6$ s.	3 marks	
3. Calculate the ball's maximum height.	3 marks	
4. For how long is the ball in the air?	3 marks	

Exercise 4						Calc. : 🗸
A group of scientists decid						at
the starting population 100 and that the population increases exponentially by 20% every week.						
Two students each write down a formula to model the population P at a time t , where t is the						he
number of days since the s		stigation:				
Formula A: $P(t) = 100t + 1$						
Formula B: $P(t) = 100 \cdot (1.5)$	$(2)^{t}$					
1. Explain why formula B is the correct formula and why formula A is incorrect.						
2. Calculate the number of insects after 2 weeks, to the nearest whole number.						
3. Copy and complete t	the table of value	ues below, g	giving your	answers t	to the nearest who	ble 2 marks
number:						
Number of days	5	10		15	20	
Population						
4. After how many days will the population exceed 4 600?						
Another group of scientists investigates a population of insects in a different large field. They						
record their results in the	table below:					
Number of days	0	5	10	15	20	
Population	100	340	580	820	1 060	
5. Explain why the result	lts follow a line :	ar model.				1 mark
6. Use the information in the table of values to write down a formula to model the population						on 2 marks
P at a time t , where t is the number of days since the start of the investigation.						
/		v			0	