Exercise 1

Given the function f, where $f(x) = \ln(3x - 2)$, determine the equation of the tangent to the	4 marks
graph of f when $x = 1$.	

Exercise 2 Determine the complex solutions to the equation: $z^2 = 3i$. Give your answers on the form $z = re^{i\theta}$ where $\theta \in [-\pi, +\pi]$. Calc. : × 5 marks

Exercise 3

Exercise 3	Calc. : 🗡
Given the function $f(x) = \frac{2x-1}{x-1}$. Let f^{-1} be the inverse function of f .	
Solve the equation $f^{-1}(x) = 2$.	3 marks

Exercise 4

Calc. : X

A strictly increasing arithmetic sequence (a_n) and a geometric sequence (b_n) have the same first	
term, where $a_1 = b_1 = 2$.	
Additionally, both (a_n) and (b_n) have the same third term. That is $a_3 = b_3$.	
The sum of the first three terms of the arithmetic sequence is 4 greater than the sum of the first	
three terms of the geometric sequence.	
Determine the formula for the <i>n</i> th term of both (a_n) and (b_n) .	7 marks

Exercise 5	Calc. : 🗡
A continuous random variable X has a density function given by a formula:	
$\begin{pmatrix} 0 & \text{if } r < 0 \end{pmatrix}$	
$f(x) = \begin{cases} 0 & ax \\ ax & ax \end{cases}$	
$a \cdot e^{-ax}$ if $x \ge 0$	
N N N N N N N N N N N N N N N N N N N	
\mathbf{W} is the part of 1	
We know that $P(X < 1) = \frac{1}{2}$.	
Shows that $x = \ln 2$	r
Show that $a = \ln 2$.	5 marks

Calc. : X

Exercise 7	Calc. : 🗡
A drone manufacturer tests new types of drones at a local athletics field.	
Drone A moves along the path given by the equation:	
$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 10 \\ 13 \\ 0 \end{pmatrix} + t \begin{pmatrix} 3 \\ 4 \\ 12 \end{pmatrix}, t \ge 0$	
The time t is in seconds and distance is measured in meters.	
1. Find the position of drone A after 6 seconds.	2 marks
2. Determine how long it will take the drone A to reach the point (25, 33, 60).	2 marks
3. Calculate the speed of the drone A. Give your answer in a simplest surd form.	2 marks
4. There is an observer watching drone A from the point (13, 53, 0).Calculate the shortest distance between the drone A and the observer, and the time when it occurs.	3 marks
Drone B takes off from the point $(9, 11, 0)$ and moves at 7 m/s in the direction $\begin{pmatrix} 1\\ 1.5\\ 3 \end{pmatrix}$.	
5. Show that the equation describing the position of the drone B is:	2 marks
$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 9 \\ 11 \\ 0 \end{pmatrix} + t \begin{pmatrix} 2 \\ 3 \\ 6 \end{pmatrix}, t \ge 0$	
6. Find the point at which the paths of the drones A and B intersect.	2 marks
7. Decide whether the drones will collide at this point.	2 marks
Justify your answer.	

Exercise 8	Calc. : 🗡
Two players, A and B alternately and independently flip a fair coin. The first player to get a	5 marks
head wins. Assume player A flips first.	
1. Write down the probability that A wins in a first throw.	
2. Calculate the probability that A wins in a third throw.	
3. Determine the probability that A obtains the first head.	