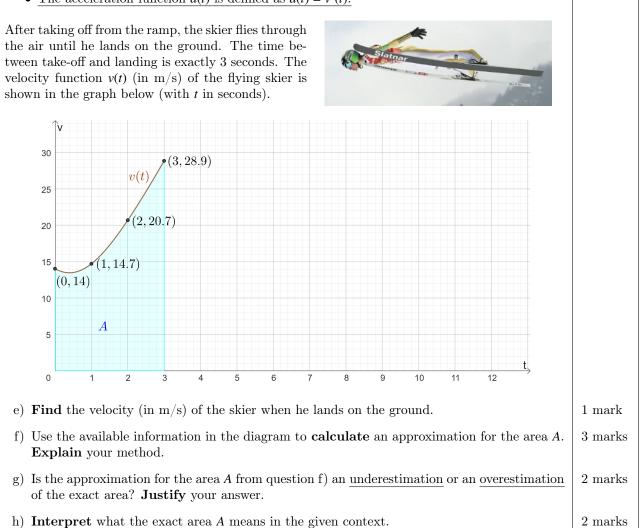


$\underline{Part 2}$

Use the following definitions for Parts 2 and 3:

- The position of an object is determined by the function s(t), where t is the time in seconds and s(t) is expressed in meters.
- The velocity function v(t) is defined as v(t) = s'(t).
- The acceleration function a(t) is defined as a(t) = v'(t).



$\frac{Part 3}{As}$ As the skier lands on the landing slope, he slows down until he comes to a complete stop. The velocity of the skier on the landing slope can be modelled by the function:	
$v(t) = -3.4 \cdot t + 28.9$	1
where t is in seconds and $t = 0$ corresponds to the moment when the skis touch the ground.	l
i) How long does it take for the skier to slow down to a complete stop? Justify your answer.	2 marks
j) Investigate whether a landing slope of 120 m is long enough for the skier.	2 marks

Exercise 2	Calc. : 🗸
The Island Part 1 (Parts 1 and 2 of this question can be solved independently.)	
The table below gives the measured population on an island.	
Beginning of the year20152020	
Population 5 500 7 250	
a) Use a <u>linear model</u> to predict the population at the beginning of 2023.	2 marks
b) Peter uses an exponential model $p(t) = k \cdot a^t$ to model the population. In this mode corresponds to the beginning of 2015 and a and k are parameters.	el, $t = 0$
Find the parameters a and k of the model $p(t)$.	3 marks
c) Show that the exponential model $f(t) = 5 500 \cdot e^{0.05525 \cdot t}$ adequately fits the given dat	ta. 2 marks
For questions d), e) and f), you can use the exponential model	
$f(t) = 5 \ 500 \cdot \mathrm{e}^{0.05525 \cdot t}$	
In this model $t = 0$ corresponds to the beginning of 2015.	
d) Determine the annual growth rate of the exponential model.	2 marks
e) Calculate $f'(5)$ and interpret what the result means in the given context.	2 marks
f) Use the exponential model to find in which year the population would reach 10 000	people. 3 marks
At the beginning of 2022, the island was hit by an earthquake. Although nobody was hur event, 6 000 people decided to leave the island immediately. After they left, the growth the island population was the same as before.	
g) Investigate in which year the island population will be the same as it was at the be of 2015.	eginning 3 marks

$\underline{Part\ 2}$

ate	1^{st} of Jan	1^{st} of Feb	1^{st} of Mar	1^{st} of Apr	1 st of May	1^{st} of Jun
aylength	7.67	8.55	10	11.2	12.33	13
(in hours)						
Date	1 st of Jul	1 st of Aug	1^{st} of Sep	1 st of Oct	1^{st} of Nov	1 st of Dec
Daylength	13.05	12.67	11.6	10.35	8.95	7.83
(in hours)						

i) Estimate the amplitude of this periodic model.
j) Hence, investigate for which values of the parameters a, b, c, and d the periodic model h(x)
4 marks fits the data adequately.