Mathématiques S7MA3

Partie A: Examen sans outil technologique

Date: 31 janvier 2023

Durée: 120 min Cours: S7-MA3

Enseignant: Laurence Hesse

Matériel autorisé :

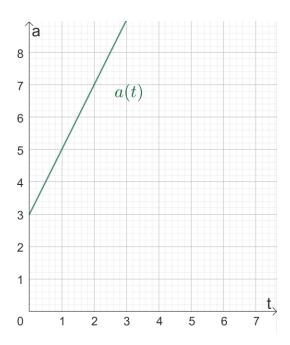
- Formulaire officiel

Examen sans calculatrice

PARTIE A		
		Points
1	Soit la fonction f telle que $f(x) = x^3 + 3x^2$ Déterminer l'équation de la tangente à la courbe représentative de f au point	5
	d'abscisse $x = -1$.	
2	La population d'une petite ville augmente selon une loi affine. En 2012 la population était de 5000 habitants. Cinq années plus tard, elle était de 6250.	
	a) Déterminer un modèle de la population P comme fonction de <i>t</i> où <i>t</i> est le temps en années comptées après 2012.	3
	b) Rechercher à partir de quelle année la population dépasse 7000 habitants.	2
3	Un étudiant lance une balle en l'air. La hauteur de la balle h , en mètres, peut être modélisée par la fonction :	5
	$h(t) = -5t^2 + 15t$	
	où h est la hauteur en mètres et t est le temps en secondes après le lancer.	
	Déterminer la hauteur maximale atteinte par la balle.	
4	La fonction F telle que $F(x) = \frac{2}{3}x^3 + 2x^2 + 2$ est une primitive de la fonction f . Soit la courbe représentative de la fonction f représentée ci-dessous.	5
	Montrer que l'aire de la partie du plan comprise entre la courbe représentative de f , les droites d'équations $x = -1$ et $x = 1$ et l'axe OX vaut 4 unités d'aire.	
	-4 -2 2	
	-2	

Page **2** de **5**

5	Des scientifiques observent la population de coccinelles dans un champ. La population peut être modélisée par la fonction $P(t) = 200 e^{\ln{(1,015)}t}$ où P est le nombre de coccinelles et t est le temps en semaines après le début des observations.	
	a) Combien de coccinelles y avait-il au début des observations ?	1
	b) Calculer le nombre de coccinelles après une semaine.	2
	c) Déterminer le pourcentage d'augmentation hebdomadaire.	2
6	Une fonction exponentielle est de la forme $f(x) = e^{ax+b}$. Le graphique de la fonction f passe par les points de coordonnées $(0;e)$ et $(1;\frac{1}{e})$. Déterminer les valeurs des paramètres a et b , et donner l'expression analytique de la fonction f , soit $f(x)$.	5
7	Le graphique suivant est celui de la fonction dérivée f' d'une fonction f. Pour chaque proposition, indiquer si elle est vraie ou fausse et donner une justification à votre réponse.	5
	Les points ne seront attribués que si les deux réponses sont correctes, le vrai ou faux et la justification.	
	$\int f'(x)$	
	8 -6 -4 -2 0 2 4 6	
	-2	
	-4	
	-6	
	a) La fonction f admet un minimum en $x = -1$.	
	b) La fonction f est décroissante sur l'intervalle $-5 < x < 3$.	
	c) La fonction <i>f</i> admet deux extremums.	
	d) L'intersection du graphique de f avec l'axe OY ne peut pas être	
	déterminée à partir du graphique de f' .	
	e) Le graphique de f doit admettre deux intersections avec l'axe OX.	


8 Le graphique d'une fonction sinusoïdale f est représenté ci-dessous. f(x)a) **Déterminer** la période de f. 1 b) Déterminer la valeur des paramètres a, b, c et d correspondant au graphique représenté de la fonction f telle que : $f(x) = a\sin(b((x-c)) + d$ Soit le graphique d'une fonction f représenté ci-dessous. 5 9 Etant donné que l'aire $A=1{,}37$ et l'aire $B=4{,}50$, trouver $\int_{-2}^1 f(x)dx$.

Page 4 de 5

5

10 La fonction accélération a est définie comme a(t) = v'(t), où v est la fonction vitesse.

L'accélération a (en $\frac{m}{s^2}$) d'un objet au temps t en secondes (s) peut être modélisée par la fonction a. Le graphique de a est représenté ci-dessous.

La vitesse de l'objet à t=0 est égale à $7\frac{m}{s}$.

Calculer la vitesse après 2 secondes.