The Pythagorean Theorem I

The Pythagorean Theorem II

Behold!

The Pythagorean Theorem III

The Pythagorean Theorem IV

The Pythagorean Theorem V

-James A. Garfield (1876)
$20^{\text {th }}$ President of the United States

The Pythagorean Theorem VI

The Pythagorean Theorem VII

—Annairizi of Arabia (circa A.D. 900)

The Pythagorean Theorem VIII

The Pythagorean Theorem IX

The Pythagorean Theorem X

-J. E. Böttcher

The Pythagorean Theorem XI

The Pythagorean Theorem XII

The Pythagorean Theorem XIII

a

b

-José A. Gomez

The Pythagorean Theorem XIV

$$
a^{2}+b^{2}=c^{2} .
$$

The Pythagorean Theorem XV

$$
\begin{aligned}
(2 c)^{2} & =2 c^{2}+2 a^{2}+2 b^{2} \\
\therefore c^{2} & =a^{2}+b^{2} .
\end{aligned}
$$

The Pythagorean Theorem XVI

The Pythagorean theorem (Proposition I. 47 in Euclid's Elements) is usually illustrated with squares drawn on the sides of a right triangle. However, as a consequence of Proposition VI. 31 in the Elements, any set of three similar figures may be used, such as equilateral triangles as shown at the right. Let T denote the area of a right triangle with legs a and b and hypotenuse c, let T_{a}, T_{b}, and T_{c} denote the areas of equilateral triangles drawn externally on sides a, b, and c, and let P denote the area of a parallelogram with sides a and b and 30° and 150° angles. Then we have

1. $T=P$.

Proof.

2. $T_{c}=T_{a}+T_{b}$.

Proof.

