The Pythagorean Theorem I

—adapted from the Chou pei suan ching (author unknown, circa B.C. 200?)

The Pythagorean Theorem II

Behold!

—Bhāskara (12th century)

The Pythagorean Theorem III

-based on Euclid's proof

The Pythagorean Theorem IV

The Pythagorean Theorem V

-James A. Garfield (1876) 20th President of the United States

The Pythagorean Theorem VI

8

The Pythagorean Theorem VII

—Annairizi of Arabia (circa A.D. 900)

The Pythagorean Theorem VIII

—Liu Hui (3rd century A.D.)

The Pythagorean Theorem IX

-Leonardo da Vinci (1452-1519)

The Pythagorean Theorem X

-J. E. Böttcher

The Pythagorean Theorem XI

-Frank Burk

The Pythagorean Theorem XII

 $a^2 + b^2 = c^2$

-Poo-sung Park

Geometry & Algebra

The Pythagorean Theorem XIII

—José A. Gomez

4

The Pythagorean Theorem XIV

This content downloaded from 128.250.144.144 on Sun, 05 Jun 2016 15:43:07 UTC All use subject to http://about.jstor.org/terms

Geometry & Algebra

The Pythagorean Theorem XV

 $(2c)^2 = 2c^2 + 2a^2 + 2b^2$ $\therefore c^2 = a^2 + b^2.$

-Nam Gu Heo

6

The Pythagorean Theorem XVI

The Pythagorean theorem (Proposition I.47 in Euclid's *Elements*) is usually illustrated with squares drawn on the sides of a right triangle. However, as a consequence of Proposition VI.31 in the *Elements*, any set of three similar figures may be used, such as equilateral triangles as shown at the right. Let *T* denote the area of a right triangle with legs *a* and *b* and hypotenuse *c*, let T_a , T_b , and T_c denote the areas of equilateral triangles drawn externally on sides *a*, *b*, and *c*, and let *P* denote the area of a parallelogram with sides *a* and *b* and 30° and 150° angles. Then we have

1. T = P.

Proof.

2.
$$T_c = T_a + T_b$$
.

Proof.

-Claudi Alsina & RBN