
Information and Communication Technologies — S6 — Work n°7

Overview — Elements of correction

1 Level 0: Basic applications

1.1 Variable handling (condition)

Here is the array that follows the variables accross the program:
a b

Line 1 22 -

Line 2 22 5

Line 3 Test true → go to line 4

Line 4 22 32

Line 5 42 32

Line 6 Test false → go to line 8

Line 8 Test false → go to line 10

Line 10 Go to line 11

Line 11 42 42

END

1.2 Bug handling (syntax)

First, the loop body is not indented: we indent line 2. Then, the string that has to be printed
has no end! The closing quote is absent (the syntaxic coloration help us to see that, as is the
case in the GUI). Finally, there is always a colon at the end of a condition, a loop, etc.

1 for loop in range(13) :

2 print("9 * 8 = 72")

Listing 1: Syntax error corrected.

1.3 Bug handling (loop iterations)

range(10, 15) will go from 10 (included) to 15 (excluded). To include 15, we write range(10, 16).

1.4 Absolute value (condition)

1 def abso (x):

2 if (x < 0):

3 return -x

4 else:

5 return x

Listing 2: Absolute value.

1.5 Insurance deductible (condition)

1 total_damage = float(input("What is the total amount of the damage ? "))

2 deductible = 0.1 * total_damage

3 if (deductible < 15):

4 deductible = 15

5 elif (deductible > 500) :

6 deductible = 500

7 reimbursement = total_damage - deductible

8 print("The insurance will reimburse " + str(reimbursement) + " ; the

deductible is " + str(deductible))

Listing 3: Insurance deductible.

Remark: in the case where the total amount of damage is < 15€, the insurance will thus
reimburse “a negative amount” of money. This means that if you use this insurance to reimburse
a 10€ broken watch, they will reimburse your watch, but will ask you for 15€ of deductible,
which means that you’ll have to pay them 5€. Don’t do that!

1.6 Exponentiation (loop)

1 def expo (x, n):

2 a = 1

3 for i in range(n):

4 a = a * x

5 return a

Listing 4: Exponentiation.

We did similar loops to compute sums. In the case of a sum, we start the sum at 0, then add
all the numbers we want to sum up, because 0 is the neutral element for addition. Here we are
multiplying so we start at 1, the neutral element for multiplication.

2 Level 1

2.1 Administration opening hours (conditions)

1 day = input("What is the day ? ").lower()

2 hour = float(input("What is the hour ? "))

3 if (day == " monday" or day == "tuesday" or day == "wednesday " or day == "

thursday " or day == "friday"):

4 if ((hour >= 8 and hour <= 13) or (hour >= 14 and hour <= 17)):

5 print("The administration is open .")

6 else:

7 print("The administration is closed.")

8 elif (day == "saturday "):

9 if (hour >= 8 and hour <= 13):

10 print("The administration is open .")

11 else:

12 print("The administration is closed.")

13 else:

14 print("The administration is closed.")

Listing 5: Opening hours.

Remark : in python, you can write 8 <= hour <= 13 instead of hour >= 8 and hour <= 13.
It’s not the case in many other programming languages, so keep the habit of writing two inequal-
ities separated by an and.

2.2 Factorial (loop)

1 def fact (n):

2 a = 1

3 for i in range(1, n+1):

4 a = a * i

5 return a

Listing 6: Factorial.

2.3 Give the change

We start at the biggest banknote (100€), try to put as many as possible, and then the 50€
banknote, and so on, up to the 5€ banknote. This is called a “greedy” algorithm.

1 def change(n):

2 nb_bills = 0

3 bills_100 = n // 100

4 nb_bills += bills_100

5 n = n % 100

6 print("Number of 100 euro bills : " + str(bills_100) + ".")

7 bills_50 = n // 50

8 nb_bills += bills_50

9 n = n % 50

10 print("Number of 50 euro bills : " + str(bills_50) + ".")

11 bills_20 = n // 20

12 nb_bills += bills_20

13 n = n % 20

14 print("Number of 20 euro bills : " + str(bills_20) + ".")

15 bills_10 = n // 10

16 nb_bills += bills_10

17 n = n % 10

18 print("Number of 10 euro bills : " + str(bills_10) + ".")

19 bills_5 = n // 5

20 nb_bills += bills_5

21 n = n % 5

22 print("Number of 5 euro bills : " + str(bills_5) + ".")

23 return nb_bills

Listing 7: Giving the change.

Remark: try this algorithm if the set of bills we use is 1, 4 and 6€ (instead of the regular set
of bills), on an amount of 8€ or 9€. What do you notice?

3 Level 2

3.1 Throwing a die (condition)

1 from random import *

2 def die_throw ():

3 r = random ()

4 r = 6 * r

5 r = r + 1

6 r = int(r)

7 return r

Listing 8: Throwing a die.

At first, random() gives us a result in [0, 1). If we multiply by 6, we obtain a result in [0; 6)
and if we add 1 we obtain a result in [1; 7). Each interval [1, 2), [2, 3), [3, 4), [4, 5), [5, 6) and
[6, 7) is equally probable and thus we can just take the integer part of the number to get equally
probable numbers in {1, 2, 3, 4, 5, 6}.

3.2 File names (condition)

1 def rename(original_name , day , month , year):

2 return str(year) + "_" + str(month) + "_" + str(day) + "_" +

original_name

Listing 9: Renaming files, taking into account dates.

To know which date is the smallest, you first compare the year, then the month, then the
day. Hence in the alphabetical order, you must put first the year, then the month, then the day.

Except that this does not work ! A file “TP6_Functions.pdf” created on October, 6th would
be renamed to 2023_10_6_TP6_Functions.pdf and would thus be after, in alphabetical order, of
a file “TP7_Overview.pdf” created on October, 13th (renamed to 2023_10_13_TP7_Overview.pdf).
A possible solution is to ensure always putting the months and the days on two digits.

1 def two_digits (n):

2 if (n < 10):

3 return "0" + str(n)

4 elif (n < 100) :

5 return str(n)

6 else:

7 print("n must be < 100 for this function .")

8 return "XX"

9

10 def rename(original_name , day , month , year):

11 return str(year) + "_" + two_digits (month) + "_" + two_digits (day) + "_"

+ original_name

Listing 10: Renaming files, taking into account dates.

Then again, this will not work if years are not between 1 000 and 9 999, for the same reason.
For instance the file 10023_10_13_TP7_Overview.pdf would be before, in alphabetical order,
the file 2023_10_13_TP7_Overview.pdf whereas it has been created 8 000 years after! This time
it’s more tricky to know how many digits are required for the year. . .

	Level 0: Basic applications
	Variable handling (condition)
	Bug handling (syntax)
	Bug handling (loop iterations)
	Absolute value (condition)
	Insurance deductible (condition)
	Exponentiation (loop)

	Level 1
	Administration opening hours (conditions)
	Factorial (loop)
	Give the change

	Level 2
	Throwing a die (condition)
	File names (condition)

