
Information and Communication Technologies — S7 — Work n°10

Trees — Part 2

This week, we want to handle trees that can represent mathematical functions. We will handle
usual mathematical functions of a variable. For example, we want to be able to express :

1. f(x) =
√
x+

3
√
x

2. g(x) = (x− 2) · ex

3. h(x) =
15 000

1 + 39 · e−0.75t

Last time we used the Tree class, see Listing 1.

1 class Tree :

2 def __init__ (self , data , left =None , right=None):

3 self .data = data

4 self .left = left

5 self .right = right

6

7 def __str__ (self):

8 return str(self .data)

Listing 1: The Tree data structure.

This week, we want to use different types of nodes for our trees:

1. Operations (+, -, *, / and ^): they have two children (left and right).

2. Leaves: numbers (1, 0.75. . .) or variables (most of the type x, sometimes t): they do not have
children (i.e., left and right are both equal to None).

3. Functions (cos, sin, tan, sqrt, exp, ln. . .): they have one child (we’ll use the convention that
this child is left, and that right has to be None).

Listing 2 is an example of use that defines
√
x+

3
√
x

. You can download it from http://www.bar

samian.am/2023-2024/S7ICTC/TP10_Trees.py.

1 x = Tree("x")

2 three = Tree (3)

3 sqrt_x = Tree ("sqrt ", x)

4 sub_tree = Tree ("/", three , sqrt_x)

5 f = Tree("+", sqrt_x , sub_tree)

Listing 2: Mathematical expression
√
x+

3
√
x

.

1. Draw the tree associated to the variable f. Here, the sub-tree sqrt_x is present twice in the tree.
You can draw it twice or once, it does not change the result.

2. Write a function evaluate_tree that takes 3 arguments tree, variable and value, and com-
putes the mathematical result of the expression contained in the tree, where the variable is
replaced by the value. You can use the function compute_tree which is given in the python file
this week, enhanced from your work last time.

For example, evaluate_tree(f, "x", 9) should be equal to
√
9 +

3
√
9
= 4.

http://www.barsamian.am/2023-2024/S7ICTC/TP10_Trees.py
http://www.barsamian.am/2023-2024/S7ICTC/TP10_Trees.py

3. Create in python the variable g which is the tree associated to g(x). Please use a node that
represents the exponential function (exp) with x as left child, instead of using the exponentiation
operator ^ with 2.718281828 and x as children.

Make sure that the evaluate_tree function from the previous question also works here. For
example, check that evaluate_tree(g, "x", 1) is equal to ≈ −2.718281828.

4. Our goal is now to write a derive_tree function that computes derivatives. This function has
two arguments tree, variable. It will be a list of “ifs”, where we’ll check each possibility for the
data. In most of the cases, it is possible to simplify the writings of the functions. I do not ask to
simplify trees that you will have, I just ask that the mathematical expression obtained is correct.

(a) Constants: what is the derivative of a constant? Write this case in python.

Test it: derive the tree three.

(b) Variable alone: what is the derivative of x? Write this case in python.

Test it: derive the tree x.

(c) The +: if f and g are two functions, how do you compute (f(x)+ g(x))′? Write this case in
python.

Test it: write the tree x+ 3 and derive it.

(d) The -: if f and g are two functions, how do you compute (f(x)− g(x))′? Write this case in
python.

Test it: write the tree 4− x and derive it.

(e) The *: if f and g are two functions, how do you compute (f(x) ∗ g(x))′? Write this case in
python.

Test it: write the tree (x+ 3) · (4− x) and derive it.

(f) The /: if f and g are two functions, how do you compute

(

f(x)

g(x)

)

′

? Write this case in

python.

Test it: write the tree
1

x
and derive it.

(g) The ^: we’ll only cover the case where we have either ab where a and b are constants, or xn

where x is the variable and n is an integer constant. How do you compute
(

ab
)

′

? How do
you compute (xn)′? Write these cases in python.

Test it: write the trees 24 and x3 and derive them.

(h) The sqrt: if f is a function, how do you compute
(

√

f(x)
)

′

? Write this case in python.

Test it: derive the f tree.

(i) The exp: if f is a function, how do you compute
(

ef(x)
)′

? Write this case in python.

Test it: derive the g tree.

5. In this last question, we’ll try to make some simplifications. We’ll write a function simplify_tree

that outputs another tree, equivalent to the one given as argument, but easier.

For instance, it will convert the tree 0 + . . . into just It will convert the tree 1 × . . . into
just It will convert 0× . . . into just 0. And so on.

