Exercice 1 Calc.: ✓

Éric a déposé ses économies, 500€, sur son Livret Jeune, le jour de ses 16 ans. Sa banque annonce un taux annuel de rémunération de 3,25%.

- 1. De quelle somme disposera Éric le jour de ses 18 ans?
- 2. Quelle est la fonction qui permet de modéliser l'évolution des économies d'Éric au cours des années? Est-ce un phénomène exponentiel?

Calc.: ✓ Exercice 2

La fonction f définie par $f(x) = 600 \times 0,58^x$ modélise le nombre de pucerons sur un pied de rosier après x jours de traitement. On décide d'interrompre le traitement lorsqu'il y a moins de 20 pucerons sur ce rosier. Déterminer, avec la calculatrice, la durée du traitement exprimée en jours entiers.

Exercice 3 Calc.: ✓

Une entreprise produit entre 0 et 8 000 articles par mois. Le coût total de production C_T , en milliers d'euros, est donné par la formule suivante, où q représente le nombre de milliers d'articles fabriqués :

$$C_T(q) = 2 + \frac{q^2}{2} + q \times 2,72^{2-q}$$

- 1. Calculer $C_T(0)$. Interpréter ce résultat pour la situation.
- 2. Quel est le domaine de la fonction C_T ? Vérifier graphiquement que C_T y est croissante.
- 3. Quel est le coût total de production de 3 000 articles fabriqués?

Exercice 4 — Résoudre les équations

Calc.: X

a)
$$4^{x-2} = 16$$

b)
$$8^x = 2$$

c)
$$0.1^x = 0.001$$

d)
$$4^{x+2} = 1$$

Exercice 5 — Résoudre les équations

Calc. : \checkmark

a)
$$3^x = 3^{2x-1}$$

b)
$$2^6 = 2^{4x-2}$$

c)
$$4^{x+2} = 2^{x+3}$$

Exercice 6 Calc.: X

f est une fonction définie par $f(x) = q^x$. Déterminer la valeur de q dans chacun des cas suivants :

a)
$$f(2) = 3$$

b)
$$f(-2) = 3$$

c)
$$f(-1) = 0, 2$$

Exercice 7 Calc.: X

Calculer la dérivée de $f(x) = x - 2e^x$ et $g(x) = e^x - x - 1$.

Exercice 8 Calc. : X

Étudier les variations de $f(x) = 2e^x - 2x + 1$ et $g(x) = e^x - ex$.

Exercice 9 Calc.: X

On considère la fonction f définie par $f(x) = e^{2x} + 3$. Établir une équation de la tangente au graphique de f au point d'abscisse 0.

Exercice 10 — Écrire sous la forme $a \cdot b^x$

Calc.: X

a)
$$f(x) = \frac{2}{7} \cdot e^{1+x}$$
 b) $g(x) = 2, 7 \cdot e^{2x}$

b)
$$g(x) = 2, 7 \cdot e^2$$

c)
$$h(x) = \frac{e^x}{3}$$

$$d) i(x) = 5 \cdot e^{3x+4}$$

Exercice 11 Calc. : X

Une denrée alimentaire est placée dans un congélateur maintenu à la température de -30° C. Lorsque cette denrée reste dans le congélateur pendant une durée t, en heures, la température à cœur C(t) de cette denrée, en °C, est donnée par la relation suivante (où a et k sont des paramètres réels que l'on va déterminer):

$$C(t) = a \cdot e^{k \cdot t} - 30$$

- 1. Déterminer a sachant que C(0) = 5.
- 2. Sachant qu'au bout d'une heure, la température à cœur est égale à -23°C, montrer que k doit satisfaire l'équation $e^k = \frac{1}{5}$.
- 3. Résoudre l'équation de la question précédente et en déduire une expression de C(t).
- 4. Réécrire C(t) sous la forme $a \cdot b^t 30$.

Exercice 12 Calc.: ✓

Une entreprise congèle des ailerons de poulet dans un tunnel de congélation avant de les conditionner en sachets. À l'instant t = 0, les ailerons, à une température de 5°C, sont placés dans le tunnel. Pour pouvoir respecter la chaîne du froid, le cahier des charges impose que les ailerons aient une température inférieure ou égale à -24°C. La température des ailerons dans le tunnel de congélation est modélisée en fonction du temps t, en heures, par la fonction f définie sur l'intervalle $[0; +\infty[$ par :

$$f(t) = 35 \cdot e^{-1.6t} - 30$$

- 1. Déterminer la température atteinte par les ailerons au bout de 30 minutes.
- 2. Étudier le sens de variation de la fonction f.
- 3. Si les ailerons de poulet sont laissés une heure et demie dans le tunnel de congélation, la température des ailerons sera-t-elle conforme au cahier des charges?
- 4. Résoudre l'équation f(t) = -24 et interpréter le résultat trouvé.

Exercice 13 — Écrire de manière plus simple

a)
$$\ln(e^{-5}) + 2\ln(e^4)$$
 b) $\frac{1}{2}e^{\ln(0,5)} - e^{\ln(-4)}$ c) $\log_3(3^{x^2+x+1}) + 2^{\log_2(3)}$

Exercice 14 — Écrire sous la forme $k \cdot e^{a \cdot x}$ Calc. : X

a)
$$f(x) = 2, 9 \cdot 3^x$$
 b) $g(x) = \frac{5e^x}{3}$ c) $h(x) = 5 \cdot 3, 21^x$ d) $i(x) = 23 \cdot (\sqrt{2})^x$

Exercice 15 Calc.: X

Calculer la dérivée de $f(x) = \ln(x) + x^3$.

Exercice 16 Calc.: X

Étudier les variations de $f(x) = 2 + 5\ln(x)$ et $g(x) = 3x + 1 - 2\ln(x)$.

Exercice 17 Calc.: ✓

On considère la fonction f définie par $f(x) = 3\ln(x-2)$. Soit \mathcal{C}_f son graphique dans un repère orthonormé.

- 1. Donner une esquisse de la courbe.
- 2. Déterminer le domaine de définition de f.
- 3. Déterminer les coordonnées du point d'intersection de \mathcal{C}_f avec les axes de coordonnées.
- 4. Déterminer les intervalles sur lesquels f est croissante ou décroissante.
- 5. Déterminer une équation de la tangente T à C_f au point d'abscisse x=3.