
MATHEMATICS 3 PERIODS

PART A

DATE: 2nd June 2025, afternoon

DURATION OF THE EXAMINATION:

2 hours (120 minutes)

AUTHORISED MATERIAL:

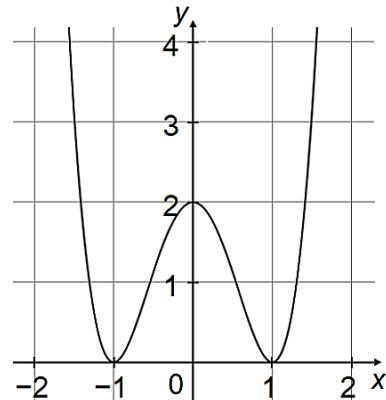
Examination without technological tool

Pencil for the graphs

Formelsammlung / Formula booklet / Recueil de formules

SPECIFIC INSTRUCTIONS:

- Answers must be supported by explanations.
- They must show the reasoning behind the results or solutions provided.
- If graphs are used to find a solution, they must be sketched as part of the answer.
- Unless indicated otherwise, full marks will not be awarded if a correct answer is not accompanied by supporting evidence or explanations of how the results or the solutions have been achieved.
- When the answer provided is not the correct one, some marks can be awarded if it is evident that an appropriate method and/or a correct approach has been used.


PART A	Page 1/5	Marks
<p>1) Given the functions f, g, h, j and k defined by:</p> $f(x) = e^x, \quad g(x) = -2x + 1, \quad h(x) = x^2 + 1, \quad j(x) = \frac{1}{x}, \quad k(x) = -\frac{1}{2}x^2 + 1$ <p>and their graphs shown in a different order below:</p> <div style="display: flex; justify-content: space-around;"> <div style="text-align: center;"> <p>a)</p> </div> <div style="text-align: center;"> <p>b)</p> </div> <div style="text-align: center;"> <p>c)</p> </div> </div> <div style="display: flex; justify-content: space-around; margin-top: 20px;"> <div style="text-align: center;"> <p>d)</p> </div> <div style="text-align: center;"> <p>e)</p> </div> </div>		
<p>Match each function to its graph. No justification is required.</p>	5 marks	
<p>2) A teacher wants to select a group of 4 students from a class of 10 to help with an event.</p> <p>a) Calculate the number of different groups the teacher can select.</p> <p>b) The class consists of 4 girls and 6 boys.</p> <p>Calculate how many different groups of 4 the teacher can select, if the group should have 2 girls and 2 boys.</p>	2 marks	3 marks

PART A	Page 2/5	Marks
3) A company produces a new device. The monthly profit from selling these devices is modelled by the function P , defined by:		
$P(x) = -0.5x^2 + 60x - 500,$ where x is the number of devices sold and $P(x)$ is the monthly profit in euros.		
a) Calculate the company's monthly profit when they have sold 10 devices in a particular month.	2 marks	
b) Determine the number of devices to be sold monthly to maximise the monthly profit.	3 marks	
4) Consider the functions f and g defined by:		
$f(x) = -x^2 - 4x + 5$		
$g(x) = x + 5.$		
The diagram shows the graphs of f and g .		
a) Verify that the graphs of f and g intersect on the coordinate axes.	2 marks	
b) Write an integral that gives the area of the shaded region.	3 marks	
You do not need to evaluate the integral, only to give an appropriate expression.		

PART A	Page 3/5	Marks
<p>5) A company conducts a survey on the mode of transport used and time taken by employees to get to work.</p> <p>The results of the survey are:</p> <ul style="list-style-type: none"> • $\frac{2}{3}$ of the employees use a bicycle. • The remaining employees use a car. • 10% of employees who use a bicycle take longer than 30 minutes. • 50% of employees who use a car take longer than 30 minutes. <p>A company employee is selected at random.</p> <p>Determine the probability that the employee takes longer than 30 minutes to get to work.</p>		5 marks
<p>6) The height of the tip of a windmill sail is modelled by a periodic function h defined by:</p> $h(t) = a \cdot \sin(b \cdot (t - 4.5)) + d,$ <p>where t is the time in seconds and $h(t)$ is the height of the tip above the ground in metres.</p> <p>The graph of h is shown on the right.</p> <p>a) Determine the height of the tip of the windmill sail at $t = 9$ seconds.</p> <p>b) Determine the values of a, b and d.</p>		

EUROPEAN BACCALAUREATE 2025: MATHEMATICS 3 PERIODS

PART A	Page 4/5	Marks
7) In a city it is estimated that 1 in 10 people are allergic to gluten.		
From the city, 6 people are chosen at random. Let X be the number of them who are allergic to gluten.		
a) Explain why it is appropriate to assume that X follows a binomial distribution.	1 mark	
b) Calculate the probability that exactly 5 of the 6 people are allergic to gluten.	2 marks	
c) Determine , from the group of 6, the expected value of the number of people who are allergic to gluten.	2 marks	
8) The graph of a function f is shown on the right.		
For each of the following statements, state whether it is true or false.		
Justify each response.		
a) $f'(0) = 0$	1 mark	
b) $f'(x)$ changes sign in the interval $(0.5, 1.5)$, i.e. $0.5 < x < 1.5$.	2 marks	
c) The equation $f'(x) = 1$ has only two solutions.	2 marks	

EUROPEAN BACCALAUREATE 2025: MATHEMATICS 3 PERIODS

PART A	Page 5/5	Marks
<p>9) A machine fills bottles with a contact lens cleaning product. From a day's production, a bottle is taken at random. Let V be the random variable which, for each bottle, represents the volume of the product in ml. We assume that V follows the normal distribution with mean $\mu = 250$ ml and standard deviation $\sigma = 16$ ml. Determine the probability that the selected bottle contains between 218 ml and 266 ml of the cleaning product. Illustrate your answer with a sketch of the normal distribution curve.</p>	5 marks	
<p>10) A factory produces computer chips. A sample is taken to check the quality. The proportion of faulty chips in the sample is called p. The sample is used to test the hypothesis $H_0 : p = 0.08$. The alternative hypothesis is given by $H_1 : p > 0.08$. If the null hypothesis is rejected, the chips will be sent back to the factory. If the null hypothesis is not rejected, the chips will be used.</p> <p>a) Describe the type 1 and type 2 errors in this situation.</p> <p>b) The significance level for this test is set at 2.5%. The p-value of the test is 0.034.</p> <p>Explain what will happen to the computer chips.</p>	2 marks	3 marks